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Introduction

Figure 1. Levels of agent influence on digital environments, with examples of LLM-based systems.
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Figure 2. Layered failure detection controls across the agent workflow
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Figure 3. Calibrating failure detection by stakes, reversibility, and agent affordances
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Introduction

When Al agents take actions, they introduce new risks. While generative Al systems
produce content for humans to act on, agents — built on the same foundation models
with added scaffolding — reason, plan, and perform sequences of actions to achieve user
goals. Unlike generative Al, these systems directly execute actions by using digital tools’ to
interact with complex environments.?2 We are already seeing prototypes of agents that can
schedule meetings through a calendar APl or book flights via web interfaces. More ambitious
proposals include agents that negotiate contracts, assist in healthcare decisions, and coor-
dinate supply chains. Because agents can act directly in the environment, failures to meet
user goals can result in financial loss, safety risks, or breakdowns in critical processes. Such
failures to achieve user goals can occur at any stage of action-taking — from planning and
tool selection to execution— and often arise in ways that are difficult to predict or catch in
advance. While design choices and deployment context shape when and how failures occur,
itis the agent’s real-time actions that directly cause incidents. These operational stages are

therefore critical points for monitoring and intervention.

Human oversight, long called for in Al governance, cannot scale to monitor fast or opaque
agent behaviors. While human oversight is essential for accountability, the very design
logic of agents — reducing human involvement — makes constant supervision impractical.®
Crucially, escalating certain decisions to humans must be meaningful rather than merely
shifting liability. We must therefore find ways to minimize harmful outcomes automatically
and ensure human oversight is triggered when agent actions carry high stakes, are irre-
versible, or depend on advanced system capabilities.* Achieving this requires what we call
real-time failure detection: automated monitoring systems that track agent behavior, flag
anomalies, and either stop agents immediately or escalate to human oversight when needed.
In this paper, we use “failure detection” broadly to encompass both automated monitoring

and controls for invoking meaningful human oversight.

We need greaterinvestmentin understanding the trade-offs and limitations of automated,
real-time failure detection. Companies like Anthropic, OpenAl, and Meta are beginning to
explore secondary models that watch for signs of agent hijacking or monitorreasoning to track

tool calls.® Yet cost trade-offs remain a challenge. Agent deployment itself can be resource-in-

1 While tool integration enables real-world impact, LLM-based agents rely on the foundation model’s reasoning
to draw up plans and handle complex goals. As agents are given access to external memory systems, likely
implemented through external databases, agents can gain the ability to retain and recall information across
sessions, supporting more continuous and adaptive behavior. (See Weng, 2023; NIST (a), 2025.)

2 Weconsider environmental interaction as the minimum threshold for agents that warrant failure detection.
Other frameworks emphasize additional properties (see Shavit et al., 2023; Chan (a) et al., 2023; Kapoor et al., 2024).
These properties include their ability to perceive their environment (Russell & Norvig, 2010) and attributes like
autonomy, goal complexity, and generality (Kasirzadeh & Gabriel, 2025). These factors, together, influence the risks
posed by agents and the need for real-time monitoring.

3 Milmo, 2024; Shibu, 2025; Benioff, 2025.

4 Failure detection should not trigger just because the agent tries a path that does not work out immediately.
Exploration, iteration, or partial progress is often part of intelligent behavior. Instead, detection should focus on
meaningful failures, e.g., when the agent does something irrecoverable, dangerous, nonsensical, or outside its
intended bounds, oris stuck.

5 Anthropic (a), 2025; OpenAl (a), 2025; Chennabasappa, 2025.
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tensive, and failure detection, particularly when relying on advanced models for oversight,
may carry similar costs.® In addition, poorly calibrated monitoring can generate excessive
false positives or miss critical failures, overloading human operators or undermining trust in
the system. This raises important questions about how well these approaches can scale, and

whether financial, legal, or reputational incentives support their broader adoption.

In this paper, we outline a framework for evaluating conditions under which real-time
failure detection should be prioritized in Al agents. Our framework focuses on what we define
as Levels 3-5 of environmental interaction in Figure 1 (see below), where systems execute direct
actions with minimal human oversight.” As these systems advance, “constrained” agents with
limits on actions will move from prototypes to widespread deployment, paving the way for more

adaptive, unconstrained agents with even greater potential risks.®

Our analysis is built around these central claims:

1. Agents require new forms of failure detection due to their ability to effect

change in the environment.

2. Therisk of agent failures — and the necessity of real-time detection — depends
on the stakes of actions, their reversibility, and the agent’s architectural

affordances.

3. Safety-critical industries show failure detection can reduce harms and provide

a foundation for safer agent design.

4. Significant technical research and regulatory guidance must be prioritized to

close gaps in designing and evaluating failure detection for Al agents.

This paper explores why and when real-time failure detection matters, but stops
short of prescriptive guidance on how to implement it. Implementation details should
be determined by agent developers and deployers who understand specific architectural
constraints and deployment contexts. Real-time detection can help address certain runtime
failures such as breakdowns in planning, execution, or tool use, but it will not in isolation

solve all problems, including misuse, deceptive behaviors by agents, or risks emerging

6 Anthropic notes that deploying agent-based systems typically consume significantly more tokens and resource
usage than single-turn models, citing that multi-agent setups can use 4x-15x more compute relative to standard
chat workflows (Anthropic (b), 2025). See also Terekhov et al., 2025.

7 We build on vocabularies like Kasirzadeh & Gabriel, 2025, to describe agent capabilities rather than impose a
rigid definition of “agent.” Our focus is on LLM-based agents acting in digital environments, which can indirectly
affect the physical world, for example, by ordering food or booking rides, and while such systems may eventually gain
more direct physical influence through robotics, that is beyond our scope.

8 While agents are advancing rapidly, current systems remain unreliable for complex, multi-step tasks and cannot
yet perform even relatively simple jobs like executive assistance without human oversight (METR, 2025; Bengio et al.,
2024). Despite growing interest, their real-world impact is still limited.



from multi-agent interactions, which may require additional approaches.® Although other
design and deployment safeguards remain essential, this paper emphasizes monitoring
during operation because agents raise distinct challenges compared to generative Al. While
a complete analysis of every type of failure or scenario in which agents might go wrong is
beyond the scope of this paper, we believe now is the right time to kickstart a conversation
on architectural norms for real-time monitoring of agents. This paper aims to equip devel-
opers, deployers, and policymakers with a clearer understanding of why and when failure
detection is necessary. As agent architectures rapidly evolve, now is a critical moment to

establish norms for built-in safety mitigations.”

9 On misuse, refer to footnote 13 for why deliberate user-driven harms fall outside scope. Multi-agent risks are also
out of scope, as our focus is on failures within individual agents. Many detection approaches here apply to both Al
agents (single systems with tool access) and agentic Al (multi-agent systems with specialized roles, as discussed in
Ranjan Sapkota et al., 2025), but not to failures that emerge specifically from interactions between multiple agents—
coordination, collusion or conflict, which require separate study (see Hammond, 2025).

10 References to “agents” and their actions in this paper use anthropomorphized language to keep descriptions
concise and readable. This is not meant to imply human-like qualities or capabilities or to blur the distinction
between software systems and humans.
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Figure 1. Levels of agent influence on digital environments, with examples of LLM-based systems.
Current systems operate at Levels 1-3, while Levels 4-5 illustrate emerging directions for more autonomous agents.

LEVEL ABILITY TO INFLUENCE THE ENVIRONMENT

EXAMPLE Al SYSTEMS

/0 Read-only, observation only Speech recognition systems )
Image classification models
§ 1 Mediated influence via humans: ChatGPT without tools
s System outputs text suggestions or advice; output only
= affects the environment if a human acts
2
@ 2 Mediated influence via humans with passive tools: ChatGPT or Claude with web search
<5( System uses tools like search or knowledge databases (provides info but doesn’t act)
g for context, not for changing the world itself Gemini Deep Research
(provides research analysis)
GitHub Copilot
(provides code suggestions)
2 3 Direct Actions — Constrained Agent: System performs Operator
'c:> single-step actions directly using predefined tools, acting ~ Claude Computer Use
e on user commands without needing humans to carry out Manus
5 the result Project Mariner
= Cursor Al
a Other code-executing or API-calling agents
4 Direct Actions — Semi-constrained Agent: System Longer and more complex workflows. E.g. User says
accepts broad goals, decomposes them into multi-step ~ “File my taxes” -> the agent gathers necessary
plans, and executes steps autonomously across known documents from user’s email, fills tax forms,
tools, without needing humans to approve every step. and submits them using chosen e-filing service,
without asking for approvals on each step.
5 Direct Actions — Unconstrained Agent: System accepts Adaptive workflows. E.g. User says “File taxes for
a broad goal, autonomously executes multi-step plans, my business” -> the agent autonomously gathers
and adapts by integrating new tools or strategies beyond  financial records, contacts suppliers for missing
what a user configured, all without requiring approvals. information, interprets regulations, applies
business-specific deductions, switches between
tools or services as needed, and completes the
filing with without further human input.
AN J

We assess levels of capability based on environmental interaction, but an agent’s ability to interact with its environment also depends on other

differentiating properties: whether it relies on predefined tools or can flexibly adapt tool use, how much human oversight it requires, and the

complexity of goals it can pursue. These properties vary by degree and collectively shape an agent’s ability to interact with its environment. Our
levels share similarities with recent surveys of agent autonomy, which highlight dimensions such as constraints on environmental impact and
flexibility of actions (Cihon et al., 2025). Although some systems might meet our Level 3 criteria through rule-based execution (e.g., spam bots),
our analysis focuses on LLM-driven agents using reasoning, planning, or decision-making, as these introduce new sources of unpredictability,

runtime failure, or hazards. Levels 4 and 5 draw inspiration from Patel, 2025.
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1. Agents require new forms of failure detection due to their
ability to effect change in the environment

Agents introduce new, diverse, and compounding failure modes
that emerge during operation, extending risks beyond those seen in
generative Al systems.

We define failure modes as agent behaviors or events that can cause or contribute to hazards
or real-world incidents." The Organization for Economic Co-operation and Development
(OECD) defines Al incidents as events where Al systems cause harm to people, disrupt infra-
structure, or violate human rights.”? Al hazards are defined as precursors to incidents — events
that could plausibly lead to such harm. This paper focuses on catching failures™ that pose
hazards, using real-time detection to prevent escalation into incidents. Put another way, a
failure mode is how something goes wrong, a hazard is the risky condition it creates, and an
incident is when actual harm occurs. For example, an indirect prompt injection would be the

failure mode, and the agent making a fraudulent purchase as a result would be the incident.

Agents inherit the unpredictability and reliability issues of foundation models, but those
errors now manifest through agentic actions. These include agents potentially manip-
ulating files, impersonating users, or making unauthorized transactions.* For example,
hallucinations in the underlying model can result in incorrect or harmful function calls (calls
to tools to execute actions).” Issues in training data, such as non-representative data, can
lead agents to take discriminatory actions, systematically disadvantaging certain groups. If
sensitive information is present in training data, agents may also expose private user data

through their actions.

In addition to problems inherited from the foundation model, agents introduce new
failure modes by acting autonomously across multiple steps. In generative Al systems,
mistakes mostly happen at the single-shot output moment. By contrast, agents operate

directly through sequences of actions. An agent may select a tool, plan steps, execute each

1 Here, “agents” refers to systems deployed in consumer and enterprise contexts that can pursue user goals, such
as customer-facing assistants, enterprise automation tools, and decision-making systems that manage transactions
orallocate resources.

12 The OECD defines an Al incident as an event, circumstance, or series of events where the development, use, or
malfunction of one or more Al systems directly or indirectly leads to any of the following: (a) injury or harm to the
health of a person or group; (b) disruption of critical infrastructure; (c) violations of human rights or breaches of
applicable law protecting fundamental, labor, or intellectual property rights; or (d) harm to property, communities, or
the environment. An Al hazard is defined as an event that could plausibly lead to an Al incident (OECD.Al, 2024).

13 This paper focuses on failures that emerge during normal agent operation, including agent hijacking— where

a system is indirectly compromised via malicious inputs in external tools or data. These are in scope for real-time
detection because the agent is subverted mid-task without user intent. By contrast, direct misuse, where a bad

actor deliberately prompts the agent to carry out harmful tasks from the start, is out of scope. In the Lovable Al
“VibeScamming” case, attackers used multi-step prompting to generate phishing content. These cases do not
reflect internal failure but rather a system working as instructed (Lakshmanan, 2025). They require complementary
safeguards such as usage policies and external defenses like email scanners or URL blacklists, not runtime detection.
(Narayanan & Kapoor, 2025).

14 Mitchell, 2025.
15 IBM Al Ethics Board, 2025.
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step, and revise its plan mid-run. Failures at any of these stages can unpredictably shift the
agent’s course, with errors compounding as the process unfolds.'® For example, an agent
tasked with managing a company’s travel bookings might misinterpret constraints, cancel
key reservations, and notify stakeholders of changes, resulting in financial loss, missed
obligations, or reputational damage. Failures can result in unauthorized actions, irreversible

changes, or further real-world harm.

Operational failures during planning, tool use, and execution are likely to be the most
proximate contributors to real-world Al incidents. While some failures originate from
system design or training flaws, they often manifest and escalate during operation, through
flawed planning, tool misuse, or unexpected outcomes during execution. These failures are
not just technical malfunctions but key contributors to real-world incidents. As a result,
these stages — planning, tool use, and execution — should be a primary focus of interven-
tions addressing agent failures.” The examples below illustrate where these failures tend to

emerge and why real-time monitoring must focus on these stages.”

16 Bengioetal., 2024.

17 These effects of agent failure modes, such as incorrect plans, exposing sensitive data, or acting outside intended
environments, contribute to hazards as defined by the OECD and may result in incidents when they lead to legal,
physical, or societal harm. Other outcomes, like trust erosion or overreliance, don’t create hazards on their own but
undermine how the human and agent work together, and increase susceptibility to future incidents. While these
harms matter, they cannot be mitigated through real-time failure detection alone. Complementary strategies are
essential, including explicit disclosure of Al status and calibrating user expectations through education as argued
by Akbulut et al., 2024. Real-time monitoring for instance can help enable clearer task boundaries and escalation to
human professionals in crisis situations.

18 Multiple taxonomies classify Al and agent failures differently. One surveys real-world cases of Al system
breakdowns to highlight recurring functionality issues (Raji et al.,2022). Another maps security, privacy, and ethics
threats across agent components and lifecycle stages (Gan et al., 2025). The OWASP Agentic Security Initiative
provides a developer-oriented threat modeling framework (OWASP, 2025). Microsoft offers practical failure mode
categories for industry assessments (Microsoft (a), 2025). This paper instead focuses on failures emerging during
live agent operation, specifically in planning, tool use, and execution, that can escalate into hazards if not detected
and mitigated in real time.
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EXAMPLES OF FAILURE MODES
Below are illustrative, non-exhaustive examples of failures during planning, tool use, and

execution,” which we expect to change as agent architectures and deployment contexts

evolve.
PLANNING « Plan inconsistent with user intent®
FAILURES
+ Misprioritizing between competing goals?
« Insufficient planning for a complex goal®
« Selecting the wrong tool to complete a step in the plan®
- Plan exceeds tool permissions or other constraints
+ Plan conflicts with the current environment (e.g., the environment changed and the
original plan is no longer valid)
TOOL-USE + Misusing the tool (e.g., executing a search query in the wrong format)?*
FAILURES
« Tools are vulnerable to attacks (e.g., prompt injection vulnerabilities in third-party
websites)?*®
- Tools fail or cause unintended side effects
- Tool accesses resources beyond task needs (e.g., user systems or external services)
EXECUTION - Taking actions inconsistent with plan
FAILURES

Mishandling unsafe tool outputs (e.g., exposing sensitive private user data retrieved
through a tool)

Exhausting operational constraints, such as inference token limits2®

Executing actions beyond authorized boundaries®

19 The distinction between planning, tool use, and execution may be ambiguous in practice, as the stages may not
always be distinctly observed.

20 Agents can struggle to infer the appropriate scope or granularity of user intent. In one case, Anthropic found that
agents over- or under-allocated subagents and resources when no explicit guidelines were established (Anthropic (c),
2025). Microsoft similarly observed an agent, tasked with “getting rid” of a user record, delete the entire table instead,
due to misinterpreting the user’s shorthand instruction (Microsoft, 2024).

21 When we refer to goals (or “user goals”) it is often a combination of the user’s goals and constraints, the
deployer’s goals and constraints, and the agent’s goals and capabilities. These intersect like a Venn diagram,
shaping how the system behaves in practice. For instance, if a pharmaceutical company instructs an Al assistant
to maximize sales of a painkiller, the system might downplay or omit the risk of addiction, aligning with the
company’s commercial goal but conflicting with the patient’s interests (Su et al., 2025). See also Wallace et al.,
2024.The authors found that a primary vulnerability in LLMs is their inability to distinguish between instructions
of different privilege levels, treating system prompts from developers the same as text from untrusted users and
third parties, enabling adversaries to override higher-level instructions with malicious prompts.

22 Agents may fail to solve complex problems when they exhaust token limits, a challenge some companies address
by designing architectures that distribute reasoning across multiple agents (Anthropic (c), 2025).

23 Agents often struggle to choose the right tool when interfaces are vague or overlap. Without clear descriptions or
examples of how and when to use each tool, agents misuse them or fail to match tools to the user’s intent (Anthropic
(c), 2025). Zhou et al. empirically show that tool-use capabilities are central to agent safety, finding higher failure
rates in scenarios when agents select or operate tools poorly (Zhou et al., 2024).

24 OpenAl observed that agents often try to visually read values like API keys or Bitcoin wallet addresses from
screens instead of copying them, leading to OCR mistakes (OpenAl (a), 2025).

25 During testing of Operator, researchers found that the agent was often misled by malicious instructions in third-
party websites, a form of prompt injection that caused it to act against user intent (OpenAl (a), 2025).

26 Kapoor et al., 2024, show that sufficient inference compute is often necessary for agents to perform complex
tasks effectively.

27 During testing of Operator, the system was restricted from visiting certain domains to reduce the risk of harmful
or unauthorized behavior (OpenAl (a), 2025).
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In addition to system design and training data choices, architectural affordances like
autonomy, memory, and flexible tool use increase the chance that failures during oper-
ation escalate into Al incidents. As agents move from Level 3 (constrained) towards Level 5
(unconstrained), they shift from executing single-step tasks to decomposing goals, running
longer workflows, and selecting tools or strategies beyond what users originally configured.
These capabilities may increase the likelihood that small failures persist, compound across
steps, and evolve into more serious outcomes.?® The severity of those outcomes will depend
on contextual factors such as the stakes or irreversibility of an action, which we explore in
the next section.?2® While existing best practices for managing risk at the pre-deployment
stage or within specific deployment contexts still apply, this paper focuses on operational

failures that are unique to agents and often need to be addressed in real time.

Human oversight becomes significantly harder during real-time agent
actions due to speed and scale.

Requiring human users or operators to review and approve Al outputs is widely seen as
a safeguard.®® To the extent it is effective, however, it becomes far less reliable as agents
operate at scale. Users can find it increasingly difficult to sustain attention as agents take
on longer, more complex workflows, such as the Level 4 systems we describe. Studies show
that human oversight can break down in two ways. Users or operators have been shown
to both over-rely and place excessive trust in Al recommendations (“automation bias”) or
under-rely, rejecting Al recommendations without justification (“algorithm aversion”), and
overall struggle to judge the accuracy of Al predictions.®’ The idea of “alert fatigue” where
repeated notifications wear down user attention, is well documented in fields from healthcare
to autonomous vehicle systems.*? It can lead to rushed reviews and possibly over time a “skill
fade,” where human operators lose the ability to intervene effectively as they grow dependent
on automation.®® Even if humans could theoretically oversee agents, such review would create

bottlenecks that undermine the speed, scale, and cost-effectiveness benefits that drive agent

28 At the same time as capabilities advance, agents may be able to better self-critique and recover from errors
(Anthropic (b), 2025).

29 Beyond failures rooted in the agent’s design and behavior discussed here, and separate from the contextual
factors that affect severity, how humans and Al systems work together also creates distinct failure modes. Tesla’s
Autopilot system created a unique failure mode by transferring control to human drivers less than one second before
impact in sixteen known instances — a problem that exists neither in purely human-driven cars nor fully autonomous
vehicles (Crootof, Kaminski & Price, 2023).

30 Examples of oversight requirements include Article 14 of the EU Al Act, which mandates that high-risk Al systems
be “effectively overseen by natural persons,” with obligations that individuals “fully understand the capacities and
limitations” of the system, “remain aware of automation bias,” and “be able to correctly interpret” its outputs. Critics
warn this may paradoxically overload human overseers or set them up for blame should systems fail (Green, 2022).
Other examples of human oversight requirements include the UN Convention on Certain Conventional Weapons
discussions on “meaningful human control” for autonomous weapons since 2013, and the General Data Protection
Regulation (GDPR) Article 22, which prohibits “solely automated” decisions with significant effects and establishes
“the right to obtain human intervention on the part of the controller.”

31 Laux, 2023.

32 Studies show that healthcare workers become desensitized to electronic safety alerts due to overwhelming
volume, with healthcare providers encountering more than 100 alarms per patient bed daily, leading to ignored alerts
that could indicate critical medical events (Ancker et al., 2017).

33 Macnamara et al., 2024.
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adoption in the first place. Human oversight is, as a result, not only technically challenging

and practically insufficient but structurally disincentivized under this agent paradigm.

Automated monitoring systems can address many weaknesses of direct human oversight
by tracking agent behavior in real time, flagging anomalies, and sometimes intervening
(e.g., pausing, halting, or prompting recovery). But this type of monitoring alone is insuf-
ficient: some agent actions create risks that no automated system can reliably judge or
resolve — especially when stakes are high, outcomes are hard to reverse, or advanced affor-
dances make behavior less predictable (we show examples in the next section). In practice,
effective automated monitoring — i.e., real-time failure detection — should act as a triage
system: resolving minor issues automatically, escalating ambiguous or severe failures to
humans, and halting when neither is safe. Escalation may involve end-users, operators, or
dedicated teams within industry or deploying organizations. This way, monitoring supports

rather than replaces meaningful human oversight.

Current evaluations remain brittle and often overly focused on limited
contexts rather than the complex, multi-step behaviors agents display
once deployed.

Today’s evaluations for generative Al systems focus primarily on pre-deployment testing,
which largely works by assessing model outputs for potential information hazards such
as toxic content or dangerous biological knowledge.®* These evaluations also often include
red-teaming or adversarial testing with human subjects to probe multi-turn responses and
simulate prompts from malicious users to uncover vulnerabilities.® While vital, these evalua-
tions are limited, as their results only cover the contexts tested, models can evolve over time,
and unexpected behaviors often surface only after deployment.®*® An emerging approach is
to use large language models (LLMs) themselves as judges to evaluate whether an agent
completed a task safely or correctly. But, recent work finds that “LLM-as-judges” often miss
subtle failures such as scenarios when agents take harmful actions while appearing to follow
instructions properly.¥” This highlights the limits of current evaluation practices and the

need for additional, real-time failure detection controls that operate during agent workflows.

34 Weidinger et al., 2023.

35 Lujain Ibrahim et al., 2025. For a fuller list of risk mitigation strategies discussed and operationalized by industry
at varied levels of maturity, see Partnership on Al, 2023, and Risto Uuk et al., 2024.

36 Pre-deployment evaluations still remain important, including specialized reinforcement learning to help models
resist prompt injection attacks and Constitutional Al approaches that embed high-level normative constraints at
training time. However, these must be supplemented with automated monitoring for Al agents that can halt action
immediately and trigger a human-in-the-loop.

37 Haitao Li et al., 2024; Sanidhya Vijayvargiya et al., 2025.
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2. The risk of agent failures — and the necessity of real-time
detection — depends on the stakes of actions, their reversibility,
and the agent’s architectural affordances

This section examines how failure detection can be structured and scaled to match the risks
posed by agents. We first explore how detection can be implemented as layered controls
across an agent’s workflow. We then identify where detection is most needed, focusing on
contextual factors such as stakes and reversibility, along with the agent’s affordances, to

help developers, deployers, and policymakers target their efforts.

Failure detection is not a single function but a layered set of controls
distributed across the agent workflow.

Failure detection, as used here, refers to real-time controls that monitor an Al agent’s actions
as they unfold — before or during execution — to mitigate misaligned, unsafe, or unintended
outputs that could lead to harm. Each stage addresses a different category of failure, using

a combination of three responses:

1. Stop (halt execution immediately)
2. Escalate (transfer control to a human for judgment)

3. Retry (revise the plan, tools, or steps before resuming)

These responses can also be combined; for example, an agent might halt, alert a human,
and retry only after approval.®® Real-time failure detection differs from post-hoc monitoring,
where user logs are analyzed for policy violations after the fact and cannot prevent imme-

diate harms from escalating.®®

These controls operate at different stages — pre-action, during action, and across
steps. Each stage targets a different class of failure, from catching invalid plans before
execution to halting unsafe behavior mid-run. To date, most real-time mitigations for

generative Al systems rely primarily on input/output content filters and training models

38 Agent developers and deployers can explore other possible responses such as warning the user without halting
for low-stakes or reversible errors, or automatically initiating a remedy to undo a failure. Low-stakes scenarios may
justify warning-only interventions (as in automotive systems where failures trigger dashboard alerts but don’t
disable driving). “Remedy” responses can also be built in e.g., systems reversing a mistaken purchase before handing
back control.

39 Scholars have increasingly recognized the need for real-time monitoring of Al agents given their autonomous
action capabilities. Shavit et al.,, 2023, emphasize that “automatic monitoring” should flag problematic behavior as it
occurs, noting that “monitoring can be provided as a service by the system deployer, or set up by the user” and may
require “a second ‘monitoring’ Al system that automatically reviews the primary agentic system’s reasoning and
actions.” Chan (b) et al., 2024, distinguish between real-time monitoring, which involves “real-time analysis of an
agent’s activity, allowing deployers and/or service or tool providers to flag and intervene on problematic behaviour as
itis occurring,” and activity logging for “post-incident attribution and forensics”.
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to “refuse” harmful requests by declining to provide dangerous information.*® While many

of these mitigations now operate over multi-turn conversations, they are still designed for

content moderation in dialog, not for supervising agents acting across tools and executing

extended workflows.* To address this gap, emerging practices point toward layered, real-time

monitoring distributed across the agent workflow, combining pre-action, during-action, and

multi-step controls, with observability layers throughout allowing users to intervene.*? These

layers target distinct classes of failures
and rely on both automated and human-
in-the-loop approaches. Some approaches,
such as refusals of unsafe inputs, build
directly on established LLM safeguards and
are relatively well understood.*® Others, such
as multi-step detection, where monitors
track progress across multiple steps to spot
when agents drift from user goals, remain
experimental and need further development.
While model providers typically apply
safeguards at the model’s input/output
boundary, agent deployers control the
orchestration layer (tool calls and results)
and therefore have the visibility needed for

workflow-level monitoring and intervention.

At the pre-action stage, controls focus
on filtering unsafe inputs and detecting
invalid plans before any external action
is taken. Current practices include prompt
filtering systems like Meta’s PromptGuard
and OpenAl's Moderation API that attempt
to screen for harmful or illegal instructions,
alongside refusal mechanisms that halt

execution when high-risk commands are

Figure 2. Layered failure detection controls across the agent workflow
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40 Real-time mitigations like content filters or refusals differ from post-hoc monitoring of Al systems. Post-hoc

monitoring involves three components: logging user interactions with generative Al systems, analyzing these logs
and user reports for violations using keyword scanning or lightweight Al models, and enforcement actions like
warnings or account suspensions based on their acceptable use policy (Adler, 2025).

41 Input filters block or flag certain user messages before they reach the model, while output filters scan its
responses before users see them. These filters often rely on rules, classifiers, or pattern matching. Refusals, by
contrast, are built into the model through training techniques like Reinforcement Learning from Human Feedback
(RLHF), allowing the model to decline harmful requests rather than just filtering content. All of these safeguards can
be bypassed through methods like adversarial prompts, jailbreaks, or fine-tuning (Bengio et al., 2024).

42 Observability layers provide interfaces that allow users or operators to track an agent’s progress across all stages
and intervene in an agent’s operations when necessary (Chan (c) et al., 2025)

43 Real-time refusals for agents extend established content moderation techniques from general-purpose Al
systems, though these approaches must account for the unique risk patterns that emerge when Al systems take
direct actions rather than generate text (Oueslati & Robin Staes-Polet, 2024).
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detected.** In agents, refusals remain an open research area, particularly how to design
systems that can decline illegal or inappropriate tasks while still completing legitimate
objectives. Pre-action controls may also observe or even probe an agent’s internal reasoning

or plan before execution, identifying goal-divergent or suspicious logic early.*

During action-taking, real-time monitoring addresses tool failures, plan divergence, and
boundary violations. These controls are less mature and often rely on runtime classifiers
(separate ML models that flag unsafe content or actions as they occur) or, in some deploy-
ments, secondary large language models tasked with observing the agent’s reasoning and
tool use in real time. If suspicious behavior is detected, such as an indirect prompt injection
(e.g., malicious instructions hidden in a document or webpage), navigation to restricted
domains, or misuse of external tools, the monitoring system can halt the agent’s execution,
escalate to a human, or retry with safer alternatives. Some deployments, like OpenAl’s
Operator, use layered runtime classifiers to enforce “allowlists” of permitted websites and
secondary models to detect injection signatures, though these techniques remain uneven

across providers.*®

Monitoring across steps is the least developed set of controls. These controls track anom-
alies like goal drift and behavioral changes that only surface when observing a sequence
of actions, rather than any one step. Emerging practices, such as Meta’s AlignmentCheck,
use language-model reasoning to compare an agent’s action sequence against the user’s
stated objective, flagging deviations that may signal covert prompt injection, misleading
tool output, or hijacked instructions. This “semantic lens” attempts to close gaps left by
static rules, which excel at catching obvious jailbreaks but miss instructions embedded in

documents, prompts, or tools that appear benign individually.

Detection methods span automated and human-in-the-loop approaches, as well as
rules-based versus behavioral checks; each has tradeoffs that determine where it can
work reliably, but these trade-offs are not yet well understood. As an example, automated
systems — LLM-based evaluators or secondary “monitor” models or agents — can operate
continuously and at scale, making them cost-effective for large deployments. Human-
centered approaches, by contrast, prioritize interpretability and judgment, often through

features like Operator’'s Watch Mode or Takeover controls that mandates user supervision on

44 Chennabasappa, 2025; OpenAl (b), 2025.

45 Some agent implementations are exploring active querying approaches rather than passive observation of
reasoning traces. Anthropic’s “think” tool allows Claude to “stop and think about whether it has all the information
it needs to move forward” during operation, providing a structured space for reasoning during complex tasks.
(Anthropic (d), 2025).

46 Operator combines rule-based restrictions and behavioral monitoring, with multiple escalation mechanisms

for sensitive contexts. The system uses confirmations that require user approval before actions affecting the

state of the world, Watch Mode mandates user supervision on high-risk websites like email services, and a prompt
injection monitor that pauses execution when suspicious instructions are detected. Additional controls include
proactive refusals for high-stakes tasks like banking transactions and domain restrictions that block navigation to
prohibited websites. All escalations are directed to the user for approval or oversight rather than to human operators,
emphasizing user control while providing automated safety checks (OpenAl (a), 2025).

47 Chennabasappa, 2025.
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high-risk websites and let users pause or override an agent mid-task.*® Automation scales
quickly but struggles with context, while humans catch nuance but are slow, expensive, and
inconsistent at scale. A further open challenge is calibrating interventions: should a system
self-correct, notify asynchronously, pause for human input, or halt entirely? Each choice

carries trade-offs, from operator overload to delays or even new hazards if mistimed.

The underlying logic of these detection methods also diverges. Both rule-based and
behavioral approaches represent forms of automated failure detection, distinct from human-
in-the-loop oversight. Rule-based checks impose hard boundaries, blocking certain tool
calls, enforcing rate limits, or filtering unsafe content.*® These controls don’t consider user
intent or the behavior of an agent; the controls simply stop violations. In contrast, behavioral
approaches ask a harder question: Is the agent still doing what the user intended? These
systems, like Meta’s AlignmentCheck or OpenAl’'s secondary monitor model in Operator,
attempt to track execution traces to spot goal drift, covert prompt injection, or tool misuse
that may not violate explicit rules. Such controls would likely need to rely on powerful models
reasoning over context, which is resource-intensive and expensive as a result. Both methods
are necessary; neither is sufficient alone. Yet, the trade-offs — cost, reliability, privacy, and

when to prefer rules over behavior — remain poorly understood.

While industry prototypes show that layered monitoring is possible, approaches remain
difficult to scale, with open questions about cost, privacy, and reliability — highlighting
the need for shared norms and technical investment. Automated monitors, especially
when powered by LLMs, inherit the opaqueness and brittleness of the systems they oversee.*
Human oversight mitigates some risks but is inherently limited by speed and cost. Privacy
complicates matters further. While real-time monitoring avoids some privacy risks by not
requiring persistent data storage, it still involves continuous observation of agent behavior
that could reveal sensitive information about users’ activities, goals, and decision-making
patterns.® Striking the right balance remains unresolved. Finally, questions of reliability cut
deeper: most real-time monitoring systems have not been independently validated, and prac-
tices like chain-of-thought (CoT) monitoring remain hotly debated. CoT inspection can expose
early signals of misbehavior (“let’s hack this site”), but traces may be unfaithful or strategi-

cally hidden.*2

These uncertainties suggest that while layered monitoring offers a foundation, deciding

48 OpenAl (a), 2025. Similarly, Google’s Project Mariner enables users to observe browser agent actions and take
control when necessary, allowing users to “stop the agent entirely, and take over what it was doing” at any time during
execution (Google DeepMind, 2025). Anthropic’s Claude Code allows humans to stop Claude whenever they want and
redirect its approach, providing real-time human oversight capabilities (Anthropic (e), 2025).

49 Rule-based checks can also reflect any thresholds established by the users or human operators.

50 Failures in “Al monitoring Al” are possible, including cascading vulnerabilities where prompt injections affect both
primary and monitor systems (Shavit et al., 2023)

51 As Chan (b) et al., 2024, explain, “real-time monitoring involves real-time analysis of an agent’s activity” without
requiring “the collection or storage of activity logs,” distinguishing it from post-hoc monitoring approaches. They
note that “some cloud providers already offer no-logging provisions for their language model deployments to some
customers, subject to real-time monitoring for abuse.”

52 Chenetal, 2024.
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where to deploy it and how much to invest in it requires a risk-based framework, which we

explore in the next section.

Failure detection efforts should be calibrated to the stakes of the use
case or task, the reversibility of potential failures, and the agent’s
architectural affordances.

While the previous section described how failure detection can be layered across an agent’s
workflow, this section examines how those controls should be scaled. We argue that detection
should be scaled up — in coverage, frequency, and intensity — when three factors align: the
task is high-stakes, the consequences are hard to reverse, and the agent has expansive
affordances. Each factor alone increases the need for detection, but together they provide
a framework for prioritizing investments in real-time monitoring and layered controls. The
following section explains each factor, why it matters for safety, and how specific agent char-
acteristics affect the level of detection required.>® This framework does not map specific
mechanisms (e.g., human approval vs. automated rules) to each factor since those choices
are highly context-dependent and evolving. Here we refer to the intensity of detection as the
resources and effort devoted to monitoring, such as the compute power used for secondary

models, the number of checks across steps, or the tolerance for delay or false positives.

Figure 3. Calibrating failure detection by stakes, reversibility, and agent affordances

®

STAKES + REVERSIBILITY + AFFORDANCES = FAILURE DETECTION
NEEDS
High Irreversible Unconstrained More real-time
Carry serious One-way operations Given a greater detection
consequences where failure degree of :
: is hard to undo autonomy
Low Reversible Constrained Less real-time
Cause little Can usually Operate within detection
harm beyond be corrected tightly scoped
inconvenience after the fact parameters

High-stakes tasks or use cases require reliable, real-time detection to prevent harmful
or costly failures. While low-stakes failures (e.g., sending a redundant email or mislabeling a
file) generally have limited impact, high-stakes failures can carry serious consequences and
therefore demand reliable real-time failure detection. Crucially, stakes must be assessed
at both the task and use-case levels. An agent that simply formats data or fills out a form

might seem low-stakes, but if its output feeds into an automated healthcare triage system

53 These factors exist on a spectrum, not as strict binaries. For example, stakes can range from trivial inconvenience
to catastrophic harm, and affordances can vary from tightly scoped to highly open-ended. The table below is not
exhaustive but illustrates common agent characteristics, risks, and examples to help reason about these gradients
without reducing them to absolutes. What counts as high stakes can also change over time; for instance, access

to sensitive data may shift from high to moderate risk as session isolation, defenses against prompt injection, and
real-time monitoring become more reliable.
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or public benefits determination, the consequences can be significant. Similarly, some tasks
are inherently high-stakes regardless of broader use case. For example, if an agent accesses
sensitive personal or financial data, failures like cross-session data exposure or prompt
injection can result in privacy breaches, compliance violations, or account takeovers, even in

workflows that otherwise appear low-risk.5* %

If a failure is hard to undo, earlier detection becomes more critical. Irreversible failures
involve one-way operations that cannot be undone, or can only be reversed with extreme diffi-
culty, external intervention, or significant cost. These include actions like deleting records,
transferring funds, or sending sensitive communications.*® Such actions can carry legal,
financial, or reputational consequences that cannot be rolled back. Early detection helps
prevent cascading failures by halting agents before these outcomes occur.®” By contrast,
reversible actions, such as scheduling a meeting or making an online order, can typically
be corrected after the fact. In these cases, post-hoc detection through log reviews or user
feedback may be sufficient. Reversibility is conditional, since agents act through external tools
and services. As agents advance, they could be designed to assess the reversibility of their

actions and pause or seek human review when corrections would be costly or impossible.*®

As agents gain more expansive affordances, their behavior becomes harder to predict
and control. This increases the risk of subtle or cascading failures, making layered failure
detection essential. Architectural choices such as allowing the agent to select tools dynam-
ically, retain memory across sessions, and use advanced reasoning expand its action space
by increasing its autonomy, ability to handle complex goals, and impact on the environment.
These capabilities make agents more powerful but also more prone to compounding errors
or misalignment over long workflows. For example, two agents with the same task may
pose very different risks if one can access arbitrary tools and another is restricted to a fixed
workflow. Agents with limited affordances, like those confined to predefined tools, are easier
to monitor and their failures are more predictable. As affordances grow, so does the need for
richer real-time monitoring and layered detection mechanisms that can adapt to complex,
long-horizon tasks. Future agents may combine memory, flexible tool access, and advanced
reasoning in unpredictable ways, and architectures will likely evolve, so the categories in the

table below reflect common clusters rather than fixed archetypes.*®

54 Heetal, 2024, and Mitchell et al., 2025.

55 Microsoft’s internal review process, the Sensitive Uses and Emerging Technologies program, provides one model
for evaluating high-stakes deployments. They consider the use of Al systems as sensitive when they affect access to
healthcare, risk physical or psychological injury, or potentially undermine human rights. (Microsoft (b), 2025). This
approach focuses on a system’s potential downstream impact on core human interests. Similarly, scholars argue
that an agent’s stakes are shaped not just by its capabilities, but by the significance of the environment it operates
in, especially when that environment bears on human well-being, social structures, or the pursuit of meaningful
goals. Together, these perspectives reinforce that stakes must be assessed in context. (Kasirzadeh & Gabriel, 2025).

56 Examples include bulk-removing email labels or sending a medication reminder at the wrong time (OpenAl (a),
2025).

57 Forexample, a recent study from Anthropic suggests that requiring human approval for irreversible actions, while
restricting agents’ access to sensitive tools and data and setting their goals carefully to avoid unintended priorities,
can help mitigate risks as agents gain more autonomy and real-world access (Anthropic (f), 2025).

58 Center for Security and Emerging Technology, 2024.
59 Kasirzadeh & Gabriel, 2025.
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Stakes: High

Stakes reflect how serious the consequences could be if an agent fails. This includes harms from
specific (tasks the agent performs (e.g., sending a message, accessing data) as well as risks tied
to the broader (usecase or domain the agent supports (e.g., education, finance, healthcare).

High-stakes failures can result in financial loss, safety risks, legal violations, or harm to individual rights. Deployers need robust,

real-time failure detection since errors at this level can cause significant harm and must be prevented before they occur.

AGENT ATTRIBUTES/ACTIONS

RISKS

Can access sensitive personal
and financial data

TASK

Access to sensitive personal data can be considered high stakes for agents because session
management represents a critical blind spot: most agents don’t isolate user sessions robustly,
causing chat histories to bleed across users which could lead to data leaks. Attackers can also
manipulate agents, often through prompt injection, to retrieve and leak sensitive data. This
can involve guiding the agent through a series of actions that expose private information in
URLs, code snippets, or other tool outputs. Failures can result in privacy breaches, compliance
violations, intellectual property loss or account takeovers.

Can trigger legal liability
through communications
or representations

TASK

Agents can perform tasks that trigger legal liability when they act or are reasonably perceived
to act on behalf of a person or organization, rather than merely drafting suggestions for
review. Al agents are increasingly envisioned to perform vital business functions or “join the
workforce.” If an agent autonomously sends a message construed as a job offer, accepts
contract terms, makes harmful public claims, or engages in discriminatory conduct, it may
expose the deployer to lawsuits, reputational harm, or regulatory penalties. These risks stem
from the agent’s communications being treated as binding or representative, even without
explicit authorization. Unlike the example below, which concerns failures in regulated domains
with ex-ante obligations, this characteristic focuses on ex-post liability, legal risk that arises
from the agent’s own statements or representations after deployment.

Handles tasks in a regulated
high-risk domain

USE CASE

Certain Al use cases are highly regulated due to their potential impact on health, safety, or
fundamental rights. For example, Annex Il of the EU Al Act designates systems in domains

like employment, education, access to essential services, and law enforcement as high-risk

— unless the systems don’t influence decision making or there’s no material risk of harm
(Article 6). Similar obligations apply under regulations like HIPAA (healthcare) and the Fair Credit
Reporting Act (finance), where failures may result in legal violations or rights-based harm.

Performs tasks in contexts
affecting individual health,
safety, or wellbeing

USE CASE

When Al agents are deployed in use cases like mental health support, grief assistance, or
wellness coaching, they can significantly influence users’ psychological wellbeing. The risk
increases with agents that retain memory, personalize interactions over time, or are embedded
in routines that create emotional dependence. Failures here include agents giving misleading
advice, reinforcing harmful beliefs, or abruptly shifting behavior in ways that cause distress. A
wellness agent, for example, may provide inappropriate advice during a mental health crisis.
Such failures can result in psychological harm or misdirected care.

Can alter critical code or
system operations

Granting agents the ability to download files, execute code, or run commands exposes entire
systems to cascading failures. A single misstep such as an agent being tricked into running
malicious code from a poisoned GitHub repository or downloading compromised software

TASK
packages could cause infrastructure disruption or critical system compromise. In domains
like healthcare, energy, or transportation, such failures can propagate rapidly across networks
and essential services, creating catastrophic risk of severe economic damage or even harm to
human life.

EXAMPLES

« Atriaging agent used in emergency rooms to prioritize care®

+ An agent that analyzes applicant data, and autonomously makes binding loan approval or denial decisions®

60 Consider an LLM-enabled agent similar to COMPOSER, an Al system developed by UC San Diego, that monitors
patient lab reports, vitals, and medical history from the time of check in. When the system detects a high-risk sepsis
pattern, it automatically alerts nursing staff (Vazquez, 2024).

61 Figure, a fintech company offering home equity lines of credit, uses Gemini’s models to power chatbots that
interact with customers, guide them through form submissions, and issue approvals — often in real time (Figure Al,

2025).
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Stakes: Low
towstakes

Low stakes failures cause little harm beyond inconvenience. Deployers can rely on post-hoc detection, such as user feedback
or log review, rather than intensive upfront safeguards, since errors are minor and generally easy to fix.

AGENT ATTRIBUTES/ACTIONS

RISKS

Creates user-facing content
(e.g., bios, resumes, websites)

Creative agents that assist with writing dating profiles, resumes, or building personal websites
are generally low stakes because users can review, edit, or discard outputs. But failures can

still occur. In some cases, generated content may misrepresent users or embed subtle biases.
When these agents are used to build live websites or apps, they may produce code with security
vulnerabilities that are difficult to detect during review, exposing users or businesses to
downstream risk.

Performs scheduling tasks

Scheduling is generally low stakes because most errors, like incorrect meeting times, can be
fixed and do not cause serious harm. But in high-risk domains such as healthcare, failures like
misprioritizing between competing goals or misallocating resources can delay critical services.
For example, a healthcare agent might prioritize efficiency over patient urgency or continuity of
care, resulting in delay or denial of access to essential services.

Summarizes content

Agents performing summarization tasks, such as generating meeting notes, composing
follow-up emails, or sharing recaps with stakeholders, are generally low stakes. But context
matters. Summarizing legal documents can carry higher risk if agents omit key clauses or
misstate terms, particularly when users lack the expertise to verify accuracy. Many deployments
will likely mitigate risk through disclaimers clarifying that outputs should be reviewed.

EXAMPLES

 Creating user-facing content like resumes, bios, or personal websites®

- Internal-facing agents that organize data, summarize meetings, or prepare drafts (without direct customer/system impact)

62 Bumble plans to introduce Al-assisted dating profile creation that can select photos, offer conversational
support, and potentially shortlist eligible matches (Forristal, 2024).
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& Reversibility: Irreversible

Reversibility refers to how easily a failure can be corrected or undone once an agent has taken an action.

Irreversible failures are those that result in one-way operations that cannot be undone (or only undone with extreme difficulty
or external intervention). Early detection prevents cascading failures.

AGENT ATTRIBUTES/ACTIONS RISKS

Initiates financial transactions The reversibility of financial transactions can vary widely by type, amount, and timeframe.
While some transactions can be reversed through institutional policies (refunds, cancellation
windows, dispute resolution), others could become effectively irreversible within minutes of
execution. Financial mistakes can cascade through connected systems, amplifying the impact
beyond the original transaction. For example, an incorrect payment could set off security alerts
that block other transactions.

Deletes or overwrites data Data loss or corruption may be unrecoverable. Even when backups exist, recovery can be costly,
time-consuming, and disruptive. These risks grow when changes propagate across shared
or interconnected environments, where one action can affect multiple users or systems,
complicating recovery. For example, deleting database entries, overwriting cloud files, clearing
task queues, or bulk-modifying metadata (like email labels) can each trigger downstream
effects that are difficult or slow to undo.

Sends communications Most communications, once delivered, cannot be undone. Emails, messages or social media
posts may trigger actions or decisions that are difficult to reverse. Some communications,
like calendar invites, can be canceled, but whether they’re truly reversible depends on how
quickly recipients respond and whether follow-up actions have already started. These risks
are heightened when messages relate to time-sensitive events: if reminders or alerts are sent
too early or too late, the failure becomes irreversible once the window to act has passed. For
example, a medication reminder delivered at the wrong time may lead to a missed dose that
cannot be corrected afterward.

EXAMPLES

+ Acoding agent that can execute terminal commands, modify production code, and delete system files while pursuing its
assigned objectives®®

- Atrading agent that autonomously conducts market research, selects trading strategies, and executes buy/sell orders to
pursue user-defined investment objectives

63 Vibe coding agents like Replit and Gemini CLI were found to have deleted production databases in spite of
commands to not modify code. The database deleted by Replit was recovered, and Gemini deleted files in a sandbox
environment (Orland, 2025).
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& Reversibility: Reversible
REVERSIBLE

High reversibility means failures can be easily corrected. Post-hoc detection and correction may be more cost-effective than
real-time monitoring, with a focus on learning from failures rather than preventing them.

AGENT ATTRIBUTES/ACTIONS RISKS

Acts through third-party APIs  Agents often use API calls to interact with external tools and services, triggering real-world

with conditional reversibility changes such as purchases, bookings, or account updates. Some of these actions can be
reversed with user effort or within policy windows, for example, canceling a ride, returning
groceries, or reversing a subscription change. Others, such as non-refundable bookings or
permanent account modifications, become effectively irreversible once executed.

Operates in a sandboxed Agents running in sandboxed or test environments work on temporary copies of data or isolated

or test environment systems therefore, errors can be intercepted or corrected before they affect real systems. Any
actions disappear when the session ends, leaving no lasting consequences. Examples include
local-only simulations, software testing environments, and modeling tools.

EXAMPLES

+ Most scheduling agents offer calendar entries or task assignments that can be easily adjusted or removed by a user.®

+ An agent that produces code commits that can be rolled back through version control systems®®

64 Microsoft Outlook’s Al scheduling assistant and similar calendar agents can create, modify, or cancel meeting
invitations through calendar APIs, making their actions reversible because users can delete scheduled events,
modify attendee lists, or rescind invitations.

65 GitHub Copilot and other Al coding assistants can generate code commits using APIs and Git versioning, making
their actions reversible because developers can use standard Git commands like git revert or git reset to undo any
Al-generated code changes, leveraging the version control system’s inherent rollback capabilities.
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Affordances: Unconstrained

Affordances refer to what an agent’s architecture “affords” or enables it to do, such as flexible tool use,
advanced reasoning or planning capabilities, and memory that persists across sessions.

Agents with unconstrained affordances operate with open-ended capabilities. As affordances increase, failures are more likely
to emerge in subtle or cascading ways, requiring layered failure detection mechanisms to ensure safety.

AGENT ATTRIBUTES/ACTIONS

RISKS

Dynamically selects
and chains tools

Agents with this architecture can flexibly choose and combine multiple tools or APIs to
accomplish tasks, rather than following predefined workflows.®® When agents plan, select, and
execute sequences of tool calls, errors at any stage, such as choosing an inappropriate tool,
misinterpreting results, or re-planning mid-run, can compound. These failures can disrupt
interconnected systems in ways that are hard to predict or reverse. The ability to select tools
dynamically also makes it more likely that such agents operate across multiple domains or are
used in unanticipated contexts, which further raises the potential for unexpected risks.®’

Persistent memory
across sessions

Agents that can retain and recall information across interactions, enable more continuous
learning and adaptive behavior. But persistent memory also creates new risks: malicious or
outdated information can shape future actions, leading to unintended outcomes.®® Agents may
continue acting on stale policies, preferences, or instructions unless explicitly updated. Attacks
like memory poisoning, where threat actors inject malicious content into an agent’s stored
memory, can hijack behavior each time that memory is accessed.®®

Extended reasoning and
planning capabilities

Advanced reasoning and planning enable agents to coordinate across multiple objectives
and run long, adaptive workflows with minimal human intervention. These abilities increase
autonomy but also raise new risks: agents can over-optimize toward unintended subgoals,
pursue strategies that diverge from user intent, or continue acting beyond the original task
scope if goals are loosely specified. It remains unclear whether further advances in reasoning
will be essential for developing more capable agents as the field evolves.

EXAMPLES

« An executive COO agent that dynamically selects and combines APIs, databases, and communication tools to negotiate
contracts, restructure operations, and execute strategic decisions while maintaining persistent memory of long-term

business objectives

+ An accounting agent that autonomously orchestrates tax preparation by selecting appropriate tools, maintaining knowledge
of compliance requirements, requesting missing documentation from multiple departments, and executing complex
multi-step workflows for final submission without human intervention

66 NIST (a), 2025.

67 Inthe framework from Kasirzadeh & Gabriel, 2025, operating across different domains and contexts falls under
“generality,” which denotes the breadth of domains and tasks across which an agent can effectively operate. Shavit et al.,
2023, address cross-domain operation under “environmental complexity,” which they define as encompassing multi-
stakeholder environments, long time horizons, and the use of multiple external tools.

68 IBM Consulting, 2025.
69 Microsoft (a), 2025.
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Affordances: Constrained
CONSTRAINED

Agents with constrained affordances operate within tightly scoped parameters. These systems are relatively easier to predict
and control, so deployers can use less layered failure detection mechanisms compared to agents with more expansive
affordances.

AGENT ATTRIBUTES/ACTIONS RISKS
Uses predefined tools Agents with this architecture are limited to a fixed set of tools and follow structured workflows,
and workflows rather than choosing tools dynamically. These constraints on tool access limit both which tools

agents can use and how they can use them, restricting tool selection, usage permissions, and
operational scope. By keeping tool choices and sequences tightly controlled, these agents are
less flexible but present a smaller risk surface, since they cannot combine tools in unexpected
ways or trigger novel failure paths. However, failures can still stem from rigid workflows
breaking when environments change (e.g., a fixed tool sequence that no longer fits user
contexts), leading to stalled or incomplete task execution.

Operates with episodic Agents that retain information only during a single session, resetting once the interaction

memory only ends. Without persistent memory, these systems can only handle short, bounded tasks and
cannot build on past interactions. This limits their autonomy and goal complexity, reducing
the chance of gradual behavior drift or unexpected capability growth over time. While episodic
memory limits compounding errors, it can still create risks, agents may repeatedly request or
store sensitive data each session, increasing privacy exposure and the chance of accidental
disclosure.”®

EXAMPLES

« Ageneral-purpose agent operating within constrained environments with limited session memory and access to only
predefined tools”

70 Note that most current LLMs have primarily episodic memory, which severely limits their ability to pursue
long-term goals.

71 Google’s Project Astra maintains 10-minute session memory across multi-modal conversations, adapting to
real-world visual input while using Google Search, Lens, and Maps based on conversational context (Pichai, 2024).
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3. Safety-critical industries show failure detection can reduce
harms and provide a foundation for safer agent design

Safety-critical domains, like the automotive industry, offer practical lessons for Al agent
design in balancing safety against utility and cost. This industry has long grappled with the
tension between dangerous under-engineering and costly over-engineering, and has reached
a point where vehicle failures constitute a tiny minority of road accidents.”? In particular,
safety practices in both autonomous systems and the wider automotive industry offer a

structured model for failure detection in Al agents.

Higher-risk functions in road vehicles require stronger failure detection
controls. This principle can inform how we assess and manage action-
level risk in Al agents.

Structured risk assessments guide how much failure detection is needed for different system
functions. The automotive industry operates on the principle of achieving an “absence of
unreasonable risk.” This acknowledges that absolute safety is infeasible, but acceptable
levels of risk can be defined through public consensus and formalized in regulation.”® In the
U.S., this principle underpins standards like ISO 26262 (Road Vehicles - Functional Safety),
which provides detailed guidance for vehicle manufacturers to assess the risk of individual
components involved in vehicle operation. A central element of ISO 26262 is requiring manu-
facturers to conduct a Hazard Analysis and Risk Assessment (HARA) process. HARA evaluates

the safety relevance of a system’s functions by scoring each on three dimensions:

« Severity - potential harm to humans if the function fails
« Exposure - the probability of the hazard occurring

« Controllability - the ability of humans or systems to mitigate the hazard™

Based on these scores, manufacturers assign each function an Automotive Safety Integrity
Level (ASIL) and design appropriate safety controls.”> Components responsible for steering or
braking are treated as high-risk and require strong failure detection and backups. Lower-risk

components, like entertainment systems, are subject to lighter oversight. For autonomous

72 As of 2007, vehicle failure or degradation was a critical cause of around 2% of accidents in the US (U.S. Department
of Transportation, 2015).

73 See the statutory definition of “motor vehicle safety” in 49 U.S. Code § 30102(a)(9) (Waymo (a), 2023).

74 The mapping between HARA and our framework is not exact, but conceptually useful. “Severity” relates to
“stakes” (the potential harm from failure) and also overlaps with “reversibility.” “Controllability” reflects our focus
on real-time failure detection, and other mitigations. “Exposure” lacks a direct equivalent, but our concept of
“affordances”, how flexibly an agent can act, use tools, and access memory, captures a similar intuition about risk
amplification in unconstrained environments.

75 “The definition of the fail-safe property of an automated driving system in the technical report ISO/TR 4804 [31]
specifies the need to achieve a minimal risk condition in addition to a safe state in the event of a failure” (Pafla et al.,
2021).
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vehicles, ‘human-in-the-loop’ controls are key when a failure is detected, and control of the

vehicle can be passed to a remote operator.”®

Like vehicle manufacturers, Al agent developers can adopt a structured risk assessment,
calibrating detection efforts based on stakes, reversibility, and affordances, to ensure
systems fail safely without eroding utility. This approach can help establish a shared
baseline for acceptable risk while industry or regulators explore more detailed standards.
The analogy applies most clearly at the action level. Just as the function of steering carries
more risk than adjusting the radio, certain agent behaviors, such as executing external code
or making irreversible decisions, present higher stakes and lower reversibility. These actions
may warrant more comprehensive and layered failure detection than others. However, iden-
tifying failures and interrupting automation too often can erode the value of an Al agent,
so architectures that ensure that the system can continue in the event of a failure may be

valuable. One engineering solution is to use backups.

Backups can support fail-safe operation but require detection to
function properly.

One way safety-critical systems preserve function in the presence of failure is through
backups — independent components that take over when the primary fails. This strategy
is common in vehicles?” backup sensors mitigate the risk of single sensor failure, and
Waymo uses a redundant secondary computer to take control if the primary system fails in
automated vehicles.”® Rather than requiring each individual component or function to be fail-
proof, the system as a whole is made robust through monitoring and backups. This principle
is formalized in ISO 26262, which allows high-risk requirements to be met through multiple
lower-risk components, as long as their joint probability for failure remains low.” Crucially,

comprehensive failure detection is necessary to activate these backups when needed.

76 Krome et al., 2023.

77 This is the idea of “redundancy” which can be described as “the ability to provide for the execution of a task if the
primary unit fails or falters.” (Leveson et al., 2009). Note: We don’t use the term redundancy to avoid conflicts with
other definitions for the term.

78 Waymo (b), 2021.

79 This reflects the idea that two diverse, independently operating systems are less likely to fail in the same way. ISO
26262 explicitly permits this approach to satisfying high ASIL requirements.
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Al agent architectures can take inspiration from this design choice. For example:

« If one agent fails to complete a tool-based task, a backup or “checker” agent could
attempt the same action with fresh context.®° Alternatively, environmental context
could be cached as a backup and restored if the agent completed its task incor-

rectly, e.g., git branching and roll-backs in software development.

« For critical user goals, multiple models could independently generate outputs,

with a monitoring system flagging inconsistencies as potential failure signals.®'

Translating these practices to Al agents will require more research and guidance, given
differences in how agents operate and fail. While Al agents differ from vehicles in how
failures can stem from shared design flaws rather than isolated hardware faults,® safety
practices from the automotive sector still offer a valuable foundation for designing failure
detection controls. The auto industry’s experience shows how structured risk assessment,
layered detection, and well-scoped backups can reduce failure rates without sacrificing
performance. Further technical research and regulatory guidance will be essential to expand
on these learnings and inform how Al agent developers and deployers should design and

evaluate failure detection systems.

4. Significant technical research and regulatory guidance must
be prioritized to close gaps in designing and evaluating failure
detection for Al agents

Agents pose new, dynamic risks in ways generative Al systems do not. The system’s ability to
plan, use tools, and take actions across different contexts means that failures can emerge
dynamically, beyond what developers can address through pre-deployment testing. Today,
agent developers experiment with real-time monitoring — catching unsafe inputs, invalid
plans,toolerrors,and boundaryviolations, while allowing for human oversight. These controls
vary in timing (before, during, or across actions) and method (rule-based vs. behavioral, or
automated vs. human). But they remain fragmented, untested at scale, and inconsistently
adopted, even as we have yet to see LLM-based agents deployed widely. Whether the market
centers on narrow, task-specific agents or general-purpose agents, both trajectories will
require scalable, credible monitoring practices, though the design and emphasis of those

practices will differ.

80 Checker or “inspector” agents have been proposed to correct faulty agent behavior (Huang et al., 2025).

81 An automotive comparison here might be “sensor fusion,” which is the process of combining data derived from
disparate sources so that the resulting information has less uncertainty than would be possible if these sources
were used individually. For example, wheel speed sensors, accelerometers, gyroscopes, and GPS systems are used to
calculate the speed of a vehicle. For Al agents, multiple models or agents could be used to suggest an action, with a
safety agent ‘combining data from these disparate sources’ to identify significant discrepancies across the agents
that may highlight a failure, reducing uncertainty in failure detection. Such an approach could significantly increase
costs (Frigerio, 2022).

82 This is called “Common Cause Fault” and highlights the importance of diversity and independence when
designing backups and integrating redundancy (Frigerio, 2022).
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Closing these gaps will take collective work in three areas: building technical methods, devel-
oping shared approaches to evaluation, and ensuring policies or market incentives support

adoption.

R&D GAPS: SPECIFIC METHODS THAT NEED DEVELOPMENT

For researchers and engineers in industry and academia

» Advance multi-step detection for goal drift. Spotting misaligned behavior across
multi-step workflows, such as agents drifting from user goals, remains experi-
mental and underdeveloped. These methods require more technical research and

evaluation to be better understood and scaled.

- Develop scalable, validated “monitor” models or agents. LLM-based monitors
inherit brittleness and opacity from the systems they watch. Independent eval-
uation (like we explore below), benchmarks or standards, and privacy-preserving

design are needed to make such monitors trustworthy and scalable.

EVALUATION GAPS: MEASURING THE EFFECTIVENESS OF FAILURE DETECTION

For standards bodies, industry consortia, and assurance providers best positioned to lead this work

+ We lack a clear understanding of when human-in-the-loop controls meaning-
fully reduce risks from agents. Human oversight is often invoked as a safeguard
but its effectiveness hinges on context — particularly forirreversible or high-stakes
actions. Key unknowns include how much human oversight actually reduces
failures in real-world settings, whether humans step in quickly enough, and how to
avoid handoffs that slow or complicate the system. One proposed action can be to
conduct pilot studies across domains (e.g., finance, healthcare, customer support)
to measure effectiveness of human oversight, prioritizing evaluations of tasks by

stakes, reversibility, and agent affordances.

- Agents performing high-stakes actions require external assurance that their
real-time monitoring controls actually work.®® Assurance refers to processes
that independently validate whether a system’s safeguards work as intended,
often through documented evidence (“safety cases”) and accredited assurance
providers. As discussed earlier, other sectors show how this can work. In the
automotive industry, car functions that carry higher safety risks are tested and
certified more rigorously, with external assessors reviewing evidence that the
systems’ safety controls and backups work reliably.®* For agents, similar tiered

approaches could assign higher scrutiny to riskier tasks or actions, for example,

83 Effectiveness of failure detection must be measured, not assumed. Al-driven content moderation systems can
fail quietly in practice, even when widely deployed. A study of Facebook’s automated moderation during the January 6
Capitol riot found that its machine-learning models and automated downranking prevented only 21% of engagement
with harmful posts, allowing most problematic content to circulate before intervention, see Goldstein et al., 2023.

84 Forexample, UL 4600 defines how to build and evaluate a safety argument for autonomous vehicles, with
redundancy and fault detection and mitigation in section 10.3 - 10.4. Additionally, ISO/PAS 8800 provides guidance on
how to extend a safety case for Al systems, with a greater focus on processes and product characteristics (Critical
Systems Labs, 2025). However, ISO 26262 is more ubiquitous.
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financial transactions or decisions affecting health, and require validation that
failure detection controls are in place and effective. While regulatory drivers for
second- or third-party assurance remain limited, market incentives (such as repu-
tational advantage or trust in sensitive sectors) may motivate voluntary adoption,

especially as domain-specific agent applications scale.®

- Without standardized evaluations, we cannot know whether real-time failure
detections work as intended. Researchers have called for a richer evaluation
science for agents, where tests simulate real-world complexity, multi-step actions,
and test for varied risks.®® Building on this, evaluations could assess the reliability
of runtime monitoring itself, not only agent performance. This could test whether
its monitoring layers catch failures, avoid unnecessary human interventions, and

respond fast enough to matter.

POLICY GAPS: GOVERNMENT LEVERS TO DRIVE ADOPTION

For regulators, agencies, and multilateral bodies

- Clarify expectations for human oversight. Article 14 of the EU Al Act applies to high-
risk Al systems, requiring them to be “effectively overseen by natural persons.”
Agents may fall within this category if deployed in high-risk domains, or if uninten-
tionally used in such settings, making these requirements relevant. Yet Article 14’s
emphasis on human oversight risks overloading individuals tasked with monitoring
outputs.®” Regulators like the EU Al Office could issue guidance on what counts as
adequate observability, when human approval must be mandatory, and how auto-

mated detection can complement oversight for high- versus low-stakes actions.

+ Use failure detection for clarifying liability. Legal liability regimes like tort and
consumer protection law, and new regulations like the EU Al Act, provide gover-
nance frameworks for Al agents, but clearer guidance is needed on what constitutes
reasonable standard of care for their development and deployment.®® Over time,
integrating real-time failure detection into human oversight expectations can
strengthen accountability and hold developers and deployers liable if/when
preventable failures come to pass. As occurred with automobiles and other indus-

tries, explicit liability rules can help incentivize accountability.

+ Incentivize incident reporting and root-cause tracking. Understanding why
agents fail is critical for societal awareness and harm prevention. The EU’s General-
Purpose Al Code of Practice already calls for reporting the “chain of events” behind

incidents and conducting root-cause analysis, including inputs and systemic risk

85 The report notes how seatbelt standards first emerged in the automotive industry before laws required car

manufacturers and drivers to use them (Ada Lovelace Institute, 2025). While assurance for Al is still mostly voluntary,
Article 61 of the EU Al Act requires high-risk systems to log incidents and monitor their behavior over time, which
could become a foundation for more formal assurance and validation of failure detection controls in Al agents.

86 Kapooretal., 2024.
87 SeeArticle 14, EU Al Act.
88 Cihon, 2024.
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failures.®® Policymakers could go further by requiring or incentivizing deployers
to design failure detection systems that capture detailed logs and traces of an
agent’s actions, so incident reporting is grounded in what the system actually did

rather than just the final outcome.

Promote transparency on failure detection practices. Model providers already
disclose performance via system cards. Policymakers could encourage or require
agent developers to include how their failure detection controls were evaluated,
the contextual factors tested, and the rationale for their choices, building on trans-

parency measures in the EU general-purpose Al Code of Practice.

Fund testbeds to evaluate and scale failure detection. The U.S. Al Action Plan
calls for the Center for Al Standards and Innovation (CAISI) to invest in break-
throughs in Al interpretability, control, and robustness. The Action Plan also calls
for secure, sector-specific testbeds to advance safe adoption.?® Al Safety Institutes
should consider piloting failure detection controls, testing trade-offs (cost, reli-
ability, privacy), and validating their effectiveness for narrow, high-stakes domains

before wider deployment.”

Track market incentives for cost-effective monitoring. Real-time monitoring
adds expense (development, latency), so firms may underinvest absent clear
returns on investment. Policymakers and civil society can use the stakes-revers-
ibility-affordances framework to track where market incentives naturally emerge.
They can also identify where to amplify those incentives through procurement
preferences or by supporting insurance and certification schemes, helping drive

investment in failure detection, especially for high-stakes uses.

89 See Measure 9.2 Safety and Security Chapter (European Union Al Office, 2024).

90 White House, 2025.

91 Seeongoing work on agents at the Al Safety Institutes: UK AISI (a), 2025; UK AISI (b), 2025; NIST (a), 2025; NIST (b)

2025.
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Conclusion and Limitations
This paper makes three contributions:

1. Defining levels of environmental influence in Al agents as a threshold for when

failure detection is warranted

2. Introducing a stakes-reversibility-affordances framework with examples to show

when detection is most necessary

3. Outlining a layered schema for failure detection across agent planning, tool use,

and execution.

Advancing these approaches will require building technical capacity, shared evaluation
practices, and baseline norms so these controls are reliable and scalable. These recommen-
dations are necessarily early-stage, given that real-world deployments of LLM-based agents
remain limited. We do not examine how monitoring layers affect speed, cost, or user expe-
rience across contexts, nor does it prescribe specific detection mechanisms for every task,
since architectures are still evolving. Finally, we flag emerging agent capabilities (such as
complex multi-agent interaction) that current mitigations may not yet fully address, under-

scoring the need for forward-looking safety measures.

Despite these limitations, we need a public discussion about architectural norms before
agent deployments scale. This debate must involve a wider set of stakeholders than those
building the systems. Architectural decisions about safety cannot be left solely to a small
circle of developers. Acting now, through research, evaluation, and policy, can help ensure

risk management practices evolve alongside the systems they are meant to govern.
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