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Introduction
When AI agents take actions, they introduce new risks. While generative AI systems 

produce content for humans to act on, agents — built on the same foundation models 

with added scaffolding — reason, plan, and perform sequences of actions to achieve user 

goals. Unlike generative AI, these systems directly execute actions by using digital tools1 to 

interact with complex environments.2 We are already seeing prototypes of agents that can 

schedule meetings through a calendar API or book flights via web interfaces. More ambitious 

proposals include agents that negotiate contracts, assist in healthcare decisions, and coor-

dinate supply chains. Because agents can act directly in the environment, failures to meet 

user goals can result in financial loss, safety risks, or breakdowns in critical processes. Such 

failures to achieve user goals can occur at any stage of action-taking — from planning and 

tool selection to execution— and often arise in ways that are difficult to predict or catch in 

advance. While design choices and deployment context shape when and how failures occur, 

it is the agent’s real-time actions that directly cause incidents. These operational stages are 

therefore critical points for monitoring and intervention.

Human oversight, long called for in AI governance, cannot scale to monitor fast or opaque 

agent behaviors. While human oversight is essential for accountability, the very design 

logic of agents — reducing human involvement — makes constant supervision impractical.3 

Crucially, escalating certain decisions to humans must be meaningful rather than merely 

shifting liability. We must therefore find ways to minimize harmful outcomes automatically 

and ensure human oversight is triggered when agent actions carry high stakes, are irre-

versible, or depend on advanced system capabilities.4 Achieving this requires what we call 

real-time failure detection: automated monitoring systems that track agent behavior, flag 

anomalies, and either stop agents immediately or escalate to human oversight when needed. 

In this paper, we use “failure detection” broadly to encompass both automated monitoring 

and controls for invoking meaningful human oversight.

We need greater investment in understanding the trade-offs and limitations of automated, 

real-time failure detection. Companies like Anthropic, OpenAI, and Meta are beginning to 

explore secondary models that watch for signs of agent hijacking or monitor reasoning to track 

tool calls.5 Yet cost trade-offs remain a challenge. Agent deployment itself can be resource-in-

1	 While tool integration enables real-world impact, LLM-based agents rely on the foundation model’s reasoning 
to draw up plans and handle complex goals. As agents are given access to external memory systems, likely 
implemented through external databases, agents can gain the ability to retain and recall information across 
sessions, supporting more continuous and adaptive behavior. (See Weng, 2023; NIST (a), 2025.)

2	 We consider environmental interaction as the minimum threshold for agents that warrant failure detection. 
Other frameworks emphasize additional properties (see Shavit et al., 2023; Chan (a) et al., 2023; Kapoor et al., 2024). 
These properties include their ability to perceive their environment (Russell & Norvig, 2010) and attributes like 
autonomy, goal complexity, and generality (Kasirzadeh & Gabriel, 2025). These factors, together, influence the risks 
posed by agents and the need for real-time monitoring.

3	 Milmo, 2024; Shibu, 2025; Benioff, 2025.

4	 Failure detection should not trigger just because the agent tries a path that does not work out immediately. 
Exploration, iteration, or partial progress is often part of intelligent behavior. Instead, detection should focus on 
meaningful failures, e.g., when the agent does something irrecoverable, dangerous, nonsensical, or outside its 
intended bounds, or is stuck.

5	 Anthropic (a), 2025; OpenAI (a), 2025; Chennabasappa, 2025.

All cited sources can be 
found in the Bibliography 
on page 31.

https://people.engr.tamu.edu/guni/csce625/slides/AI.pdf
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tensive, and failure detection, particularly when relying on advanced models for oversight, 

may carry similar costs.6 In addition, poorly calibrated monitoring can generate excessive 

false positives or miss critical failures, overloading human operators or undermining trust in 

the system. This raises important questions about how well these approaches can scale, and 

whether financial, legal, or reputational incentives support their broader adoption.

In this paper, we outline a framework for evaluating conditions under which real-time 

failure detection should be prioritized in AI agents. Our framework focuses on what we define 

as Levels 3-5 of environmental interaction in Figure 1 (see below), where systems execute direct 

actions with minimal human oversight.7 As these systems advance, “constrained” agents with 

limits on actions will move from prototypes to widespread deployment, paving the way for more 

adaptive, unconstrained agents with even greater potential risks.8

Our analysis is built around these central claims:

1.	 Agents require new forms of failure detection due to their ability to effect 

change in the environment.

2.	 The risk of agent failures — and the necessity of real-time detection — depends 

on the stakes of actions, their reversibility, and the agent’s architectural 

affordances.

3.	 Safety-critical industries show failure detection can reduce harms and provide 

a foundation for safer agent design.

4.	 Significant technical research and regulatory guidance must be prioritized to 

close gaps in designing and evaluating failure detection for AI agents.

This paper explores why and when real-time failure detection matters, but stops 

short of prescriptive guidance on how to implement it. Implementation details should 

be determined by agent developers and deployers who understand specific architectural 

constraints and deployment contexts. Real-time detection can help address certain runtime 

failures such as breakdowns in planning, execution, or tool use, but it will not in isolation 

solve all problems, including misuse, deceptive behaviors by agents, or risks emerging 

6	 Anthropic notes that deploying agent‑based systems typically consume significantly more tokens and resource 
usage than single‑turn models, citing that multi‑agent setups can use 4×–15× more compute relative to standard 
chat workflows (Anthropic (b), 2025). See also Terekhov et al., 2025.

7	 We build on vocabularies like Kasirzadeh & Gabriel, 2025, to describe agent capabilities rather than impose a 
rigid definition of “agent.” Our focus is on LLM-based agents acting in digital environments, which can indirectly 
affect the physical world, for example, by ordering food or booking rides, and while such systems may eventually gain 
more direct physical influence through robotics, that is beyond our scope.

8	 While agents are advancing rapidly, current systems remain unreliable for complex, multi-step tasks and cannot 
yet perform even relatively simple jobs like executive assistance without human oversight (METR, 2025; Bengio et al., 
2024). Despite growing interest, their real-world impact is still limited. 
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from multi-agent interactions, which may require additional approaches.9 Although other 

design and deployment safeguards remain essential, this paper emphasizes monitoring 

during operation because agents raise distinct challenges compared to generative AI. While 

a complete analysis of every type of failure or scenario in which agents might go wrong is 

beyond the scope of this paper, we believe now is the right time to kickstart a conversation 

on architectural norms for real-time monitoring of agents. This paper aims to equip devel-

opers, deployers, and policymakers with a clearer understanding of why and when failure 

detection is necessary. As agent architectures rapidly evolve, now is a critical moment to 

establish norms for built-in safety mitigations.10

9	 On misuse, refer to footnote 13 for why deliberate user-driven harms fall outside scope. Multi-agent risks are also 
out of scope, as our focus is on failures within individual agents. Many detection approaches here apply to both AI 
agents (single systems with tool access) and agentic AI (multi-agent systems with specialized roles, as discussed in 
Ranjan Sapkota et al., 2025), but not to failures that emerge specifically from interactions between multiple agents—
coordination, collusion or conflict, which require separate study (see Hammond, 2025).

10	 References to “agents” and their actions in this paper use anthropomorphized language to keep descriptions 
concise and readable. This is not meant to imply human-like qualities or capabilities or to blur the distinction 
between software systems and humans.

https://arxiv.org/pdf/2505.10468
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Figure 1. Levels of agent influence on digital environments, with examples of LLM-based systems. 
Current systems operate at Levels 1–3, while Levels 4–5 illustrate emerging directions for more autonomous agents.

We assess levels of capability based on environmental interaction, but an agent’s ability to interact with its environment also depends on other 
differentiating properties: whether it relies on predefined tools or can flexibly adapt tool use, how much human oversight it requires, and the 
complexity of goals it can pursue. These properties vary by degree and collectively shape an agent’s ability to interact with its environment. Our 
levels share similarities with recent surveys of agent autonomy, which highlight dimensions such as constraints on environmental impact and 
flexibility of actions (Cihon et al., 2025). Although some systems might meet our Level 3 criteria through rule-based execution (e.g., spam bots), 
our analysis focuses on LLM-driven agents using reasoning, planning, or decision-making, as these introduce new sources of unpredictability, 
runtime failure, or hazards. Levels 4 and 5 draw inspiration from Patel, 2025.
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LEVEL ABILITY TO INFLUENCE THE ENVIRONMENT EXAMPLE AI SYSTEMS

Speech recognition systems
Image classification models

Read-only, observation only0

ChatGPT without toolsMediated influence via humans: 
System outputs text suggestions or advice; output only 
affects the environment if a human acts 

1

ChatGPT or Claude with web search
(provides info but doesn’t act)

Gemini Deep Research
 (provides research analysis)

GitHub Copilot
(provides code suggestions)

Mediated influence via humans with passive tools: 
System uses tools like search or knowledge databases 
for context, not for changing the world itself

2

Operator
Claude Computer Use
Manus
Project Mariner
Cursor AI
Other code-executing or API-calling agents

Direct Actions — Constrained Agent: System performs 
single-step actions directly using predefined tools, acting 
on user commands without needing humans to carry out 
the result

3

Direct Actions — Semi-constrained Agent: System 
accepts broad goals, decomposes them into multi-step 
plans, and executes steps autonomously across known 
tools, without needing humans to approve every step. 

4

Direct Actions — Unconstrained Agent: System accepts 
a broad goal, autonomously executes multi-step plans, 
and adapts by integrating new tools or strategies beyond 
what a user configured, all without requiring approvals.

5

Longer and more complex workflows. E.g. User says 
“File my taxes” the agent gathers necessary 
documents from user’s email, fills tax forms, 
and submits them using chosen e-filing service, 
without asking for approvals on each step. 

Adaptive workflows. E.g. User says “File taxes for 
my business” the agent autonomously gathers 
financial records, contacts suppliers for missing 
information, interprets regulations, applies 
business-specific deductions, switches between 
tools or services as needed, and completes the 
filing with without further human input.
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1. Agents require new forms of failure detection due to their  
ability to effect change in the environment

Agents introduce new, diverse, and compounding failure modes 
that emerge during operation, extending risks beyond those seen in 
generative AI systems.

We define failure modes as agent behaviors or events that can cause or contribute to hazards 

or real-world incidents.11 The Organization for Economic Co-operation and Development 

(OECD) defines AI incidents as events where AI systems cause harm to people, disrupt infra-

structure, or violate human rights.12 AI hazards are defined as precursors to incidents — events 

that could plausibly lead to such harm. This paper focuses on catching failures13 that pose 

hazards, using real-time detection to prevent escalation into incidents. Put another way, a 

failure mode is how something goes wrong, a hazard is the risky condition it creates, and an 

incident is when actual harm occurs. For example, an indirect prompt injection would be the 

failure mode, and the agent making a fraudulent purchase as a result would be the incident.

Agents inherit the unpredictability and reliability issues of foundation models, but those 

errors now manifest through agentic actions. These include agents potentially manip-

ulating files, impersonating users, or making unauthorized transactions.14 For example, 

hallucinations in the underlying model can result in incorrect or harmful function calls (calls 

to tools to execute actions).15 Issues in training data, such as non-representative data, can 

lead agents to take discriminatory actions, systematically disadvantaging certain groups. If 

sensitive information is present in training data, agents may also expose private user data 

through their actions.

In addition to problems inherited from the foundation model, agents introduce new 

failure modes by acting autonomously across multiple steps. In generative AI systems, 

mistakes mostly happen at the single-shot output moment. By contrast, agents operate 

directly through sequences of actions. An agent may select a tool, plan steps, execute each 

11	 Here, “agents” refers to systems deployed in consumer and enterprise contexts that can pursue user goals, such 
as customer-facing assistants, enterprise automation tools, and decision-making systems that manage transactions 
or allocate resources.

12	 The OECD defines an AI incident as an event, circumstance, or series of events where the development, use, or 
malfunction of one or more AI systems directly or indirectly leads to any of the following: (a) injury or harm to the 
health of a person or group; (b) disruption of critical infrastructure; (c) violations of human rights or breaches of 
applicable law protecting fundamental, labor, or intellectual property rights; or (d) harm to property, communities, or 
the environment. An AI hazard is defined as an event that could plausibly lead to an AI incident (OECD.AI, 2024).

13	 This paper focuses on failures that emerge during normal agent operation, including agent hijacking— where 
a system is indirectly compromised via malicious inputs in external tools or data. These are in scope for real-time 
detection because the agent is subverted mid-task without user intent. By contrast, direct misuse, where a bad 
actor deliberately prompts the agent to carry out harmful tasks from the start, is out of scope. In the Lovable AI 
“VibeScamming” case, attackers used multi-step prompting to generate phishing content. These cases do not 
reflect internal failure but rather a system working as instructed (Lakshmanan, 2025). They require complementary 
safeguards such as usage policies and external defenses like email scanners or URL blacklists, not runtime detection. 
(Narayanan & Kapoor, 2025).

14	 Mitchell, 2025.

15	 IBM AI Ethics Board, 2025.
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step, and revise its plan mid-run. Failures at any of these stages can unpredictably shift the 

agent’s course, with errors compounding as the process unfolds.16 For example, an agent 

tasked with managing a company’s travel bookings might misinterpret constraints, cancel 

key reservations, and notify stakeholders of changes, resulting in financial loss, missed 

obligations, or reputational damage. Failures can result in unauthorized actions, irreversible 

changes, or further real-world harm.

Operational failures during planning, tool use, and execution are likely to be the most 

proximate contributors to real-world AI incidents. While some failures originate from 

system design or training flaws, they often manifest and escalate during operation, through 

flawed planning, tool misuse, or unexpected outcomes during execution. These failures are 

not just technical malfunctions but key contributors to real-world incidents. As a result, 

these stages — planning, tool use, and execution — should be a primary focus of interven-

tions addressing agent failures.17 The examples below illustrate where these failures tend to 

emerge and why real-time monitoring must focus on these stages.18

16	 Bengio et al., 2024.

17	 These effects of agent failure modes, such as incorrect plans, exposing sensitive data, or acting outside intended 
environments, contribute to hazards as defined by the OECD and may result in incidents when they lead to legal, 
physical, or societal harm. Other outcomes, like trust erosion or overreliance, don’t create hazards on their own but 
undermine how the human and agent work together, and increase susceptibility to future incidents. While these 
harms matter, they cannot be mitigated through real-time failure detection alone. Complementary strategies are 
essential, including explicit disclosure of AI status and calibrating user expectations through education as argued 
by Akbulut et al., 2024. Real-time monitoring for instance can help enable clearer task boundaries and escalation to 
human professionals in crisis situations.

18	 Multiple taxonomies classify AI and agent failures differently. One surveys real-world cases of AI system 
breakdowns to highlight recurring functionality issues (Raji et al.,2022). Another maps security, privacy, and ethics 
threats across agent components and lifecycle stages (Gan et al., 2025). The OWASP Agentic Security Initiative 
provides a developer-oriented threat modeling framework (OWASP, 2025). Microsoft offers practical failure mode 
categories for industry assessments (Microsoft (a), 2025). This paper instead focuses on failures emerging during 
live agent operation, specifically in planning, tool use, and execution, that can escalate into hazards if not detected 
and mitigated in real time.
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EXAMPLES OF FAILURE MODES 

Below are illustrative, non-exhaustive examples of failures during planning, tool use, and 

execution,19 which we expect to change as agent architectures and deployment contexts 

evolve.

PLANNING 
FAILURES

•	 Plan inconsistent with user intent20

•	 Misprioritizing between competing goals21

•	 Insufficient planning for a complex goal22

•	 Selecting the wrong tool to complete a step in the plan23

•	 Plan exceeds tool permissions or other constraints

•	 Plan conflicts with the current environment (e.g., the environment changed and the 
original plan is no longer valid)

TOOL-USE 
FAILURES

•	 Misusing the tool (e.g., executing a search query in the wrong format)24

•	 Tools are vulnerable to attacks (e.g., prompt injection vulnerabilities in third-party 
websites)25

•	 Tools fail or cause unintended side effects

•	 Tool accesses resources beyond task needs (e.g., user systems or external services)

EXECUTION 
FAILURES

•	 Taking actions inconsistent with plan

•	 Mishandling unsafe tool outputs (e.g., exposing sensitive private user data retrieved 
through a tool)

•	 Exhausting operational constraints, such as inference token limits26

•	 Executing actions beyond authorized boundaries27

19	 The distinction between planning, tool use, and execution may be ambiguous in practice, as the stages may not 
always be distinctly observed.

20	 Agents can struggle to infer the appropriate scope or granularity of user intent. In one case, Anthropic found that 
agents over- or under-allocated subagents and resources when no explicit guidelines were established (Anthropic (c), 
2025). Microsoft similarly observed an agent, tasked with “getting rid” of a user record, delete the entire table instead, 
due to misinterpreting the user’s shorthand instruction (Microsoft, 2024).

21	 When we refer to goals (or “user goals”) it is often a combination of the user’s goals and constraints, the 
deployer’s goals and constraints, and the agent’s goals and capabilities. These intersect like a Venn diagram, 
shaping how the system behaves in practice. For instance, if a pharmaceutical company instructs an AI assistant 
to maximize sales of a painkiller, the system might downplay or omit the risk of addiction, aligning with the 
company’s commercial goal but conflicting with the patient’s interests (Su et al., 2025). See also Wallace et al., 
2024. The authors found that a primary vulnerability in LLMs is their inability to distinguish between instructions 
of different privilege levels, treating system prompts from developers the same as text from untrusted users and 
third parties, enabling adversaries to override higher-level instructions with malicious prompts. 

22	 Agents may fail to solve complex problems when they exhaust token limits, a challenge some companies address 
by designing architectures that distribute reasoning across multiple agents (Anthropic (c), 2025).

23	 Agents often struggle to choose the right tool when interfaces are vague or overlap. Without clear descriptions or 
examples of how and when to use each tool, agents misuse them or fail to match tools to the user’s intent (Anthropic 
(c), 2025). Zhou et al. empirically show that tool-use capabilities are central to agent safety, finding higher failure 
rates in scenarios when agents select or operate tools poorly (Zhou et al., 2024).

24	 OpenAI observed that agents often try to visually read values like API keys or Bitcoin wallet addresses from 
screens instead of copying them, leading to OCR mistakes (OpenAI (a), 2025).

25	 During testing of Operator, researchers found that the agent was often misled by malicious instructions in third-
party websites, a form of prompt injection that caused it to act against user intent (OpenAI (a), 2025). 

26	 Kapoor et al., 2024, show that sufficient inference compute is often necessary for agents to perform complex 
tasks effectively.

27	 During testing of Operator, the system was restricted from visiting certain domains to reduce the risk of harmful 
or unauthorized behavior (OpenAI (a), 2025).

https://www.anthropic.com/engineering/multi-agent-research-system
https://www.microsoft.com/en-us/security/blog/2025/04/24/new-whitepaper-outlines-the-taxonomy-of-failure-modes-in-ai-agents/
https://arxiv.org/abs/2404.13208
https://openai.com/index/operator-system-card/


PARTNERSHIP ON AI
Prioritizing Real-Time Failure Detection in AI Agents

10

In addition to system design and training data choices, architectural affordances like 

autonomy, memory, and flexible tool use increase the chance that failures during oper-

ation escalate into AI incidents. As agents move from Level 3 (constrained) towards Level 5 

(unconstrained), they shift from executing single-step tasks to decomposing goals, running 

longer workflows, and selecting tools or strategies beyond what users originally configured. 

These capabilities may increase the likelihood that small failures persist, compound across 

steps, and evolve into more serious outcomes.28 The severity of those outcomes will depend 

on contextual factors such as the stakes or irreversibility of an action, which we explore in 

the next section.29 While existing best practices for managing risk at the pre-deployment 

stage or within specific deployment contexts still apply, this paper focuses on operational 

failures that are unique to agents and often need to be addressed in real time.

Human oversight becomes significantly harder during real-time agent 
actions due to speed and scale. 

Requiring human users or operators to review and approve AI outputs is widely seen as 

a safeguard.30 To the extent it is effective, however, it becomes far less reliable as agents 

operate at scale. Users can find it increasingly difficult to sustain attention as agents take 

on longer, more complex workflows, such as the Level 4 systems we describe. Studies show 

that human oversight can break down in two ways. Users or operators have been shown 

to both over‑rely and place excessive trust in AI recommendations (“automation bias”) or 

under‑rely, rejecting AI recommendations without justification (“algorithm aversion”), and 

overall struggle to judge the accuracy of AI predictions.31 The idea of “alert fatigue” where 

repeated notifications wear down user attention, is well documented in fields from healthcare 

to autonomous vehicle systems.32 It can lead to rushed reviews and possibly over time a “skill 

fade,” where human operators lose the ability to intervene effectively as they grow dependent 

on automation.33 Even if humans could theoretically oversee agents, such review would create 

bottlenecks that undermine the speed, scale, and cost-effectiveness benefits that drive agent 

28	 At the same time as capabilities advance, agents may be able to better self-critique and recover from errors 
(Anthropic (b), 2025).

29	 Beyond failures rooted in the agent’s design and behavior discussed here, and separate from the contextual 
factors that affect severity, how humans and AI systems work together also creates distinct failure modes. Tesla’s 
Autopilot system created a unique failure mode by transferring control to human drivers less than one second before 
impact in sixteen known instances — a problem that exists neither in purely human-driven cars nor fully autonomous 
vehicles (Crootof, Kaminski & Price, 2023).

30	 Examples of oversight requirements include Article 14 of the EU AI Act, which mandates that high-risk AI systems 
be “effectively overseen by natural persons,” with obligations that individuals “fully understand the capacities and 
limitations” of the system, “remain aware of automation bias,” and “be able to correctly interpret” its outputs. Critics 
warn this may paradoxically overload human overseers or set them up for blame should systems fail (Green, 2022). 
Other examples of human oversight requirements include the UN Convention on Certain Conventional Weapons 
discussions on “meaningful human control” for autonomous weapons since 2013, and the General Data Protection 
Regulation (GDPR) Article 22, which prohibits “solely automated” decisions with significant effects and establishes 
“the right to obtain human intervention on the part of the controller.” 

31	 Laux, 2023. 

32	 Studies show that healthcare workers become desensitized to electronic safety alerts due to overwhelming 
volume, with healthcare providers encountering more than 100 alarms per patient bed daily, leading to ignored alerts 
that could indicate critical medical events (Ancker et al., 2017).

33	 Macnamara et al., 2024.

https://artificialintelligenceact.eu/article/14/
https://gdpr-info.eu/art-22-gdpr/
https://gdpr-info.eu/art-22-gdpr/
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adoption in the first place. Human oversight is, as a result, not only technically challenging 

and practically insufficient but structurally disincentivized under this agent paradigm. 

Automated monitoring systems can address many weaknesses of direct human oversight 

by tracking agent behavior in real time, flagging anomalies, and sometimes intervening 

(e.g., pausing, halting, or prompting recovery). But this type of monitoring alone is insuf-

ficient: some agent actions create risks that no automated system can reliably judge or 

resolve — especially when stakes are high, outcomes are hard to reverse, or advanced affor-

dances make behavior less predictable (we show examples in the next section). In practice, 

effective automated monitoring — i.e., real-time failure detection — should act as a triage 

system: resolving minor issues automatically, escalating ambiguous or severe failures to 

humans, and halting when neither is safe. Escalation may involve end-users, operators, or 

dedicated teams within industry or deploying organizations. This way, monitoring supports 

rather than replaces meaningful human oversight.

Current evaluations remain brittle and often overly focused on limited 
contexts rather than the complex, multi-step behaviors agents display 
once deployed. 

Today’s evaluations for generative AI systems focus primarily on pre-deployment testing, 

which largely works by assessing model outputs for potential information hazards such 

as toxic content or dangerous biological knowledge.34 These evaluations also often include 

red-teaming or adversarial testing with human subjects to probe multi-turn responses and 

simulate prompts from malicious users to uncover vulnerabilities.35 While vital, these evalua-

tions are limited, as their results only cover the contexts tested, models can evolve over time, 

and unexpected behaviors often surface only after deployment.36 An emerging approach is 

to use large language models (LLMs) themselves as judges to evaluate whether an agent 

completed a task safely or correctly. But, recent work finds that “LLM-as-judges” often miss 

subtle failures such as scenarios when agents take harmful actions while appearing to follow 

instructions properly.37 This highlights the limits of current evaluation practices and the 

need for additional, real-time failure detection controls that operate during agent workflows.

34	 Weidinger et al., 2023.

35	 Lujain Ibrahim et al., 2025. For a fuller list of risk mitigation strategies discussed and operationalized by industry 
at varied levels of maturity, see Partnership on AI, 2023, and Risto Uuk et al., 2024.

36	 Pre-deployment evaluations still remain important, including specialized reinforcement learning to help models 
resist prompt injection attacks and Constitutional AI approaches that embed high-level normative constraints at 
training time. However, these must be supplemented with automated monitoring for AI agents that can halt action 
immediately and trigger a human-in-the-loop. 

37	 Haitao Li et al., 2024; Sanidhya Vijayvargiya et al., 2025.
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This section examines how failure detection can be structured and scaled to match the risks 

posed by agents. We first explore how detection can be implemented as layered controls 

across an agent’s workflow. We then identify where detection is most needed, focusing on 

contextual factors such as stakes and reversibility, along with the agent’s affordances, to 

help developers, deployers, and policymakers target their efforts.

Failure detection is not a single function but a layered set of controls 
distributed across the agent workflow.

Failure detection, as used here, refers to real-time controls that monitor an AI agent’s actions 

as they unfold — before or during execution — to mitigate misaligned, unsafe, or unintended 

outputs that could lead to harm. Each stage addresses a different category of failure, using 

a combination of three responses: 

1.	 Stop (halt execution immediately)

2.	 Escalate (transfer control to a human for judgment)

3.	 Retry (revise the plan, tools, or steps before resuming)

These responses can also be combined; for example, an agent might halt, alert a human, 

and retry only after approval.38 Real-time failure detection differs from post-hoc monitoring, 

where user logs are analyzed for policy violations after the fact and cannot prevent imme-

diate harms from escalating.39

These controls operate at different stages — pre-action, during action, and across 

steps. Each stage targets a different class of failure, from catching invalid plans before 

execution to halting unsafe behavior mid-run. To date, most real-time mitigations for 

generative AI systems rely primarily on input/output content filters and training models 

38	 Agent developers and deployers can explore other possible responses such as warning the user without halting 
for low-stakes or reversible errors, or automatically initiating a remedy to undo a failure. Low-stakes scenarios may 
justify warning-only interventions (as in automotive systems where failures trigger dashboard alerts but don’t 
disable driving). “Remedy” responses can also be built in e.g., systems reversing a mistaken purchase before handing 
back control.

39	 Scholars have increasingly recognized the need for real-time monitoring of AI agents given their autonomous 
action capabilities. Shavit et al., 2023, emphasize that “automatic monitoring” should flag problematic behavior as it 
occurs, noting that “monitoring can be provided as a service by the system deployer, or set up by the user” and may 
require “a second ‘monitoring’ AI system that automatically reviews the primary agentic system’s reasoning and 
actions.” Chan (b) et al., 2024, distinguish between real-time monitoring, which involves “real-time analysis of an 
agent’s activity, allowing deployers and/or service or tool providers to flag and intervene on problematic behaviour as 
it is occurring,” and activity logging for “post-incident attribution and forensics”. 

2. The risk of agent failures — and the necessity of real-time 
detection — depends on the stakes of actions, their reversibility, 
and the agent’s architectural affordances
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to “refuse” harmful requests by declining to provide dangerous information.40 While many 

of these mitigations now operate over multi-turn conversations, they are still designed for 

content moderation in dialog, not for supervising agents acting across tools and executing 

extended workflows.41 To address this gap, emerging practices point toward layered, real-time 

monitoring distributed across the agent workflow, combining pre-action, during-action, and 

multi-step controls, with observability layers throughout allowing users to intervene.42 These 

layers target distinct classes of failures 

and rely on both automated and human-

in-the-loop approaches. Some approaches, 

such as refusals of unsafe inputs, build 

directly on established LLM safeguards and 

are relatively well understood.43 Others, such 

as multi-step detection, where monitors 

track progress across multiple steps to spot 

when agents drift from user goals, remain 

experimental and need further development. 

While model providers typically apply 

safeguards at the model’s input/output 

boundary, agent deployers control the 

orchestration layer (tool calls and results) 

and therefore have the visibility needed for 

workflow-level monitoring and intervention.

At the pre-action stage, controls focus 

on filtering unsafe inputs and detecting 

invalid plans before any external action 

is taken. Current practices include prompt 

filtering systems like Meta’s PromptGuard 

and OpenAI’s Moderation API that attempt 

to screen for harmful or illegal instructions, 

alongside refusal mechanisms that halt 

execution when high-risk commands are 

40	 Real-time mitigations like content filters or refusals differ from post-hoc monitoring of AI systems. Post-hoc 
monitoring involves three components: logging user interactions with generative AI systems, analyzing these logs 
and user reports for violations using keyword scanning or lightweight AI models, and enforcement actions like 
warnings or account suspensions based on their acceptable use policy (Adler, 2025).

41	 Input filters block or flag certain user messages before they reach the model, while output filters scan its 
responses before users see them. These filters often rely on rules, classifiers, or pattern matching. Refusals, by 
contrast, are built into the model through training techniques like Reinforcement Learning from Human Feedback 
(RLHF), allowing the model to decline harmful requests rather than just filtering content. All of these safeguards can 
be bypassed through methods like adversarial prompts, jailbreaks, or fine‑tuning (Bengio et al., 2024).

42	 Observability layers provide interfaces that allow users or operators to track an agent’s progress across all stages 
and intervene in an agent’s operations when necessary (Chan (c) et al., 2025)

43	 Real-time refusals for agents extend established content moderation techniques from general-purpose AI 
systems, though these approaches must account for the unique risk patterns that emerge when AI systems take 
direct actions rather than generate text (Oueslati & Robin Staes-Polet, 2024).
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Figure 2. Layered failure detection controls across the agent workflow
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detected.44 In agents, refusals remain an open research area, particularly how to design 

systems that can decline illegal or inappropriate tasks while still completing legitimate 

objectives. Pre-action controls may also observe or even probe an agent’s internal reasoning 

or plan before execution, identifying goal-divergent or suspicious logic early.45

During action-taking, real-time monitoring addresses tool failures, plan divergence, and 

boundary violations. These controls are less mature and often rely on runtime classifiers 

(separate ML models that flag unsafe content or actions as they occur) or, in some deploy-

ments, secondary large language models tasked with observing the agent’s reasoning and 

tool use in real time. If suspicious behavior is detected, such as an indirect prompt injection 

(e.g., malicious instructions hidden in a document or webpage), navigation to restricted 

domains, or misuse of external tools, the monitoring system can halt the agent’s execution, 

escalate to a human, or retry with safer alternatives. Some deployments, like OpenAI’s 

Operator, use layered runtime classifiers to enforce “allowlists” of permitted websites and 

secondary models to detect injection signatures, though these techniques remain uneven 

across providers.46

Monitoring across steps is the least developed set of controls. These controls track anom-

alies like goal drift and behavioral changes that only surface when observing a sequence 

of actions, rather than any one step. Emerging practices, such as Meta’s AlignmentCheck, 

use language-model reasoning to compare an agent’s action sequence against the user’s 

stated objective, flagging deviations that may signal covert prompt injection, misleading 

tool output, or hijacked instructions. This “semantic lens” attempts to close gaps left by 

static rules, which excel at catching obvious jailbreaks but miss instructions embedded in 

documents, prompts, or tools that appear benign individually.47

Detection methods span automated and human-in-the-loop approaches, as well as 

rules-based versus behavioral checks; each has tradeoffs that determine where it can 

work reliably, but these trade-offs are not yet well understood. As an example, automated 

systems — LLM-based evaluators or secondary “monitor” models or agents — can operate 

continuously and at scale, making them cost-effective for large deployments. Human-

centered approaches, by contrast, prioritize interpretability and judgment, often through 

features like Operator’s Watch Mode or Takeover controls that mandates user supervision on 

44	 Chennabasappa, 2025; OpenAI (b), 2025.

45	 Some agent implementations are exploring active querying approaches rather than passive observation of 
reasoning traces. Anthropic’s “think” tool allows Claude to “stop and think about whether it has all the information 
it needs to move forward” during operation, providing a structured space for reasoning during complex tasks. 
(Anthropic (d), 2025).

46	 Operator combines rule-based restrictions and behavioral monitoring, with multiple escalation mechanisms 
for sensitive contexts. The system uses confirmations that require user approval before actions affecting the 
state of the world, Watch Mode mandates user supervision on high-risk websites like email services, and a prompt 
injection monitor that pauses execution when suspicious instructions are detected. Additional controls include 
proactive refusals for high-stakes tasks like banking transactions and domain restrictions that block navigation to 
prohibited websites. All escalations are directed to the user for approval or oversight rather than to human operators, 
emphasizing user control while providing automated safety checks (OpenAI (a), 2025).

47	 Chennabasappa, 2025.
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high-risk websites and let users pause or override an agent mid-task.48 Automation scales 

quickly but struggles with context, while humans catch nuance but are slow, expensive, and 

inconsistent at scale. A further open challenge is calibrating interventions: should a system 

self-correct, notify asynchronously, pause for human input, or halt entirely? Each choice 

carries trade-offs, from operator overload to delays or even new hazards if mistimed. 

The underlying logic of these detection methods also diverges. Both rule-based and 

behavioral approaches represent forms of automated failure detection, distinct from human-

in-the-loop oversight. Rule-based checks impose hard boundaries, blocking certain tool 

calls, enforcing rate limits, or filtering unsafe content.49 These controls don’t consider user 

intent or the behavior of an agent; the controls simply stop violations. In contrast, behavioral 

approaches ask a harder question: Is the agent still doing what the user intended? These 

systems, like Meta’s AlignmentCheck or OpenAI’s secondary monitor model in Operator, 

attempt to track execution traces to spot goal drift, covert prompt injection, or tool misuse 

that may not violate explicit rules. Such controls would likely need to rely on powerful models 

reasoning over context, which is resource-intensive and expensive as a result. Both methods 

are necessary; neither is sufficient alone. Yet, the trade-offs — cost, reliability, privacy, and 

when to prefer rules over behavior — remain poorly understood.

While industry prototypes show that layered monitoring is possible, approaches remain 

difficult to scale, with open questions about cost, privacy, and reliability — highlighting 

the need for shared norms and technical investment. Automated monitors, especially 

when powered by LLMs, inherit the opaqueness and brittleness of the systems they oversee.50 

Human oversight mitigates some risks but is inherently limited by speed and cost. Privacy 

complicates matters further. While real-time monitoring avoids some privacy risks by not 

requiring persistent data storage, it still involves continuous observation of agent behavior 

that could reveal sensitive information about users’ activities, goals, and decision-making 

patterns.51 Striking the right balance remains unresolved. Finally, questions of reliability cut 

deeper: most real-time monitoring systems have not been independently validated, and prac-

tices like chain-of-thought (CoT) monitoring remain hotly debated. CoT inspection can expose 

early signals of misbehavior (“let’s hack this site”), but traces may be unfaithful or strategi-

cally hidden.52

These uncertainties suggest that while layered monitoring offers a foundation, deciding 

48	 OpenAI (a), 2025. Similarly, Google’s Project Mariner enables users to observe browser agent actions and take 
control when necessary, allowing users to “stop the agent entirely, and take over what it was doing” at any time during 
execution (Google DeepMind, 2025). Anthropic’s Claude Code allows humans to stop Claude whenever they want and 
redirect its approach, providing real-time human oversight capabilities (Anthropic (e), 2025).

49	 Rule-based checks can also reflect any thresholds established by the users or human operators. 

50	 Failures in “AI monitoring AI” are possible, including cascading vulnerabilities where prompt injections affect both 
primary and monitor systems (Shavit et al., 2023)

51	 As Chan (b) et al., 2024, explain, “real-time monitoring involves real-time analysis of an agent’s activity” without 
requiring “the collection or storage of activity logs,” distinguishing it from post-hoc monitoring approaches. They 
note that “some cloud providers already offer no-logging provisions for their language model deployments to some 
customers, subject to real-time monitoring for abuse.”

52	 Chen et al., 2024.

https://arxiv.org/abs/2401.13138


PARTNERSHIP ON AI
Prioritizing Real-Time Failure Detection in AI Agents

16

where to deploy it and how much to invest in it requires a risk-based framework, which we 

explore in the next section.

Failure detection efforts should be calibrated to the stakes of the use 
case or task, the reversibility of potential failures, and the agent’s 
architectural affordances.

While the previous section described how failure detection can be layered across an agent’s 

workflow, this section examines how those controls should be scaled. We argue that detection 

should be scaled up — in coverage, frequency, and intensity — when three factors align: the 

task is high-stakes, the consequences are hard to reverse, and the agent has expansive 

affordances. Each factor alone increases the need for detection, but together they provide 

a framework for prioritizing investments in real-time monitoring and layered controls. The 

following section explains each factor, why it matters for safety, and how specific agent char-

acteristics affect the level of detection required.53 This framework does not map specific 

mechanisms (e.g., human approval vs. automated rules) to each factor since those choices 

are highly context-dependent and evolving. Here we refer to the intensity of detection as the 

resources and effort devoted to monitoring, such as the compute power used for secondary 

models, the number of checks across steps, or the tolerance for delay or false positives.

STAKES AFFORDANCES FAILURE DETECTION
NEEDS

High
Carry serious

consequences

Low
Cause little

harm beyond
inconvenience

REVERSIBILITY

Irreversible
One-way operations

where failure
is hard to undo

Reversible
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be corrected
after the fact

Unconstrained
Given a greater

degree of
autonomy
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parameters

More real-time
detection

Less real-time
detection

Figure 3. Calibrating failure detection by stakes, reversibility, and agent affordances

High-stakes tasks or use cases require reliable, real-time detection to prevent harmful 

or costly failures. While low-stakes failures (e.g., sending a redundant email or mislabeling a 

file) generally have limited impact, high-stakes failures can carry serious consequences and 

therefore demand reliable real-time failure detection. Crucially, stakes must be assessed 

at both the task and use-case levels. An agent that simply formats data or fills out a form 

might seem low-stakes, but if its output feeds into an automated healthcare triage system 

53	 These factors exist on a spectrum, not as strict binaries. For example, stakes can range from trivial inconvenience 
to catastrophic harm, and affordances can vary from tightly scoped to highly open‑ended. The table below is not 
exhaustive but illustrates common agent characteristics, risks, and examples to help reason about these gradients 
without reducing them to absolutes. What counts as high stakes can also change over time; for instance, access 
to sensitive data may shift from high to moderate risk as session isolation, defenses against prompt injection, and 
real-time monitoring become more reliable.
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or public benefits determination, the consequences can be significant. Similarly, some tasks 

are inherently high-stakes regardless of broader use case. For example, if an agent accesses 

sensitive personal or financial data, failures like cross-session data exposure or prompt 

injection can result in privacy breaches, compliance violations, or account takeovers, even in 

workflows that otherwise appear low-risk.54, 55

If a failure is hard to undo, earlier detection becomes more critical. Irreversible failures 

involve one-way operations that cannot be undone, or can only be reversed with extreme diffi-

culty, external intervention, or significant cost. These include actions like deleting records, 

transferring funds, or sending sensitive communications.56 Such actions can carry legal, 

financial, or reputational consequences that cannot be rolled back. Early detection helps 

prevent cascading failures by halting agents before these outcomes occur.57 By contrast, 

reversible actions, such as scheduling a meeting or making an online order, can typically 

be corrected after the fact. In these cases, post-hoc detection through log reviews or user 

feedback may be sufficient. Reversibility is conditional, since agents act through external tools 

and services. As agents advance, they could be designed to assess the reversibility of their 

actions and pause or seek human review when corrections would be costly or impossible.58

As agents gain more expansive affordances, their behavior becomes harder to predict 

and control. This increases the risk of subtle or cascading failures, making layered failure 

detection essential. Architectural choices such as allowing the agent to select tools dynam-

ically, retain memory across sessions, and use advanced reasoning expand its action space 

by increasing its autonomy, ability to handle complex goals, and impact on the environment. 

These capabilities make agents more powerful but also more prone to compounding errors 

or misalignment over long workflows. For example, two agents with the same task may 

pose very different risks if one can access arbitrary tools and another is restricted to a fixed 

workflow. Agents with limited affordances, like those confined to predefined tools, are easier 

to monitor and their failures are more predictable. As affordances grow, so does the need for 

richer real-time monitoring and layered detection mechanisms that can adapt to complex, 

long-horizon tasks. Future agents may combine memory, flexible tool access, and advanced 

reasoning in unpredictable ways, and architectures will likely evolve, so the categories in the 

table below reflect common clusters rather than fixed archetypes.59

54	 He et al., 2024, and Mitchell et al., 2025.

55	 Microsoft’s internal review process, the Sensitive Uses and Emerging Technologies program, provides one model 
for evaluating high-stakes deployments. They consider the use of AI systems as sensitive when they affect access to 
healthcare, risk physical or psychological injury, or potentially undermine human rights. (Microsoft (b), 2025). This 
approach focuses on a system’s potential downstream impact on core human interests. Similarly, scholars argue 
that an agent’s stakes are shaped not just by its capabilities, but by the significance of the environment it operates 
in, especially when that environment bears on human well-being, social structures, or the pursuit of meaningful 
goals. Together, these perspectives reinforce that stakes must be assessed in context. (Kasirzadeh & Gabriel, 2025).

56	 Examples include bulk-removing email labels or sending a medication reminder at the wrong time (OpenAI (a), 
2025).

57	 For example, a recent study from Anthropic suggests that requiring human approval for irreversible actions, while 
restricting agents’ access to sensitive tools and data and setting their goals carefully to avoid unintended priorities, 
can help mitigate risks as agents gain more autonomy and real‑world access (Anthropic (f), 2025).

58	 Center for Security and Emerging Technology, 2024.

59	 Kasirzadeh & Gabriel, 2025.
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 Stakes: High
Stakes reflect how serious the consequences could be if an agent fails. This includes harms from 
specific TASKS  the agent performs (e.g., sending a message, accessing data) as well as risks tied  
to the broader USE CASE  or domain the agent supports (e.g., education, finance, healthcare).

HIGH STAKES

High-stakes failures can result in financial loss, safety risks, legal violations, or harm to individual rights. Deployers need robust, 
real-time failure detection since errors at this level can cause significant harm and must be prevented before they occur.

AGENT ATTRIBUTES/ACTIONS RISKS

Can access sensitive personal  
and financial data

TASK

Access to sensitive personal data can be considered high stakes for agents because session 
management represents a critical blind spot: most agents don’t isolate user sessions robustly, 
causing chat histories to bleed across users which could lead to data leaks. Attackers can also 
manipulate agents, often through prompt injection, to retrieve and leak sensitive data. This 
can involve guiding the agent through a series of actions that expose private information in 
URLs, code snippets, or other tool outputs. Failures can result in privacy breaches, compliance 
violations, intellectual property loss or account takeovers.

Can trigger legal liability  
through communications  
or representations

TASK

Agents can perform tasks that trigger legal liability when they act or are reasonably perceived 
to act on behalf of a person or organization, rather than merely drafting suggestions for 
review. AI agents are increasingly envisioned to perform vital business functions or “join the 
workforce.” If an agent autonomously sends a message construed as a job offer, accepts 
contract terms, makes harmful public claims, or engages in discriminatory conduct, it may 
expose the deployer to lawsuits, reputational harm, or regulatory penalties. These risks stem 
from the agent’s communications being treated as binding or representative, even without 
explicit authorization. Unlike the example below, which concerns failures in regulated domains 
with ex-ante obligations, this characteristic focuses on ex-post liability, legal risk that arises 
from the agent’s own statements or representations after deployment. 

Handles tasks in a regulated  
high-risk domain

USE CASE

Certain AI use cases are highly regulated due to their potential impact on health, safety, or 
fundamental rights. For example, Annex III of the EU AI Act designates systems in domains 
like employment, education, access to essential services, and law enforcement as high-risk 
— unless the systems don’t influence decision making or there’s no material risk of harm 
(Article 6). Similar obligations apply under regulations like HIPAA (healthcare) and the Fair Credit 
Reporting Act (finance), where failures may result in legal violations or rights-based harm.

Performs tasks in contexts  
affecting individual health,  
safety, or wellbeing

USE CASE

When AI agents are deployed in use cases like mental health support, grief assistance, or 
wellness coaching, they can significantly influence users’ psychological wellbeing. The risk 
increases with agents that retain memory, personalize interactions over time, or are embedded 
in routines that create emotional dependence. Failures here include agents giving misleading 
advice, reinforcing harmful beliefs, or abruptly shifting behavior in ways that cause distress. A 
wellness agent, for example, may provide inappropriate advice during a mental health crisis. 
Such failures can result in psychological harm or misdirected care.

Can alter critical code or  
system operations

TASK

Granting agents the ability to download files, execute code, or run commands exposes entire 
systems to cascading failures. A single misstep such as an agent being tricked into running 
malicious code from a poisoned GitHub repository or downloading compromised software 
packages could cause infrastructure disruption or critical system compromise. In domains 
like healthcare, energy, or transportation, such failures can propagate rapidly across networks 
and essential services, creating catastrophic risk of severe economic damage or even harm to 
human life.

EXAMPLES

•	 A triaging agent used in emergency rooms to prioritize care60

•	 An agent that analyzes applicant data, and autonomously makes binding loan approval or denial decisions61

60	 Consider an LLM-enabled agent similar to COMPOSER, an AI system developed by UC San Diego, that monitors 
patient lab reports, vitals, and medical history from the time of check in. When the system detects a high-risk sepsis 
pattern, it automatically alerts nursing staff (Vazquez, 2024).

61	 Figure, a fintech company offering home equity lines of credit, uses Gemini’s models to power chatbots that 
interact with customers, guide them through form submissions, and issue approvals — often in real time (Figure AI, 
2025).

https://arxiv.org/abs/2406.08689
https://arxiv.org/abs/2406.08689
https://blog.samaltman.com/reflections
https://blog.samaltman.com/reflections
https://artificialintelligenceact.eu/annex/3/
https://artificialintelligenceact.eu/article/6/
https://ojs.aaai.org/index.php/AIES/article/view/31613
https://garymarcus.substack.com/p/llms-coding-agents-security-nightmare?utm_source=post-email-title&publication_id=888615&post_id=171159957&utm_campaign=email-post-title&isFreemail=true&r=laubk&triedRedirect=true&utm_medium=email
https://health.ucsd.edu/news/press-releases/2024-01-23-study-ai-surveillance-tool-successfully-helps-to-predict-sepsis-saves-lives/
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 Stakes: Low
LOW STAKES

Low stakes failures cause little harm beyond inconvenience. Deployers can rely on post-hoc detection, such as user feedback 
or log review, rather than intensive upfront safeguards, since errors are minor and generally easy to fix.

AGENT ATTRIBUTES/ACTIONS RISKS

Creates user-facing content  
(e.g., bios, resumes, websites)

Creative agents that assist with writing dating profiles, resumes, or building personal websites 
are generally low stakes because users can review, edit, or discard outputs. But failures can 
still occur. In some cases, generated content may misrepresent users or embed subtle biases. 
When these agents are used to build live websites or apps, they may produce code with security 
vulnerabilities that are difficult to detect during review, exposing users or businesses to 
downstream risk.

Performs scheduling tasks Scheduling is generally low stakes because most errors, like incorrect meeting times, can be 
fixed and do not cause serious harm. But in high-risk domains such as healthcare, failures like 
misprioritizing between competing goals or misallocating resources can delay critical services. 
For example, a healthcare agent might prioritize efficiency over patient urgency or continuity of 
care, resulting in delay or denial of access to essential services. 

Summarizes content Agents performing summarization tasks, such as generating meeting notes, composing 
follow-up emails, or sharing recaps with stakeholders, are generally low stakes. But context 
matters. Summarizing legal documents can carry higher risk if agents omit key clauses or 
misstate terms, particularly when users lack the expertise to verify accuracy. Many deployments 
will likely mitigate risk through disclaimers clarifying that outputs should be reviewed.

EXAMPLES

•	 Creating user-facing content like resumes, bios, or personal websites62 

•	 Internal-facing agents that organize data, summarize meetings, or prepare drafts (without direct customer/system impact)

62	 Bumble plans to introduce AI-assisted dating profile creation that can select photos, offer conversational 
support, and potentially shortlist eligible matches (Forristal, 2024).

https://docs.anthropic.com/en/docs/about-claude/use-case-guides/legal-summarization
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 Reversibility: Irreversible
Reversibility refers to how easily a failure can be corrected or undone once an agent has taken an action. 

IRREVERSIBLE

Irreversible failures are those that result in one-way operations that cannot be undone (or only undone with extreme difficulty 
or external intervention). Early detection prevents cascading failures.

AGENT ATTRIBUTES/ACTIONS RISKS

Initiates financial transactions The reversibility of financial transactions can vary widely by type, amount, and timeframe. 
While some transactions can be reversed through institutional policies (refunds, cancellation 
windows, dispute resolution), others could become effectively irreversible within minutes of 
execution. Financial mistakes can cascade through connected systems, amplifying the impact 
beyond the original transaction. For example, an incorrect payment could set off security alerts 
that block other transactions.

Deletes or overwrites data Data loss or corruption may be unrecoverable. Even when backups exist, recovery can be costly, 
time-consuming, and disruptive. These risks grow when changes propagate across shared 
or interconnected environments, where one action can affect multiple users or systems, 
complicating recovery. For example, deleting database entries, overwriting cloud files, clearing 
task queues, or bulk-modifying metadata (like email labels) can each trigger downstream 
effects that are difficult or slow to undo.

Sends communications Most communications, once delivered, cannot be undone. Emails, messages or social media 
posts may trigger actions or decisions that are difficult to reverse. Some communications, 
like calendar invites, can be canceled, but whether they’re truly reversible depends on how 
quickly recipients respond and whether follow‑up actions have already started. These risks 
are heightened when messages relate to time‑sensitive events: if reminders or alerts are sent 
too early or too late, the failure becomes irreversible once the window to act has passed. For 
example, a medication reminder delivered at the wrong time may lead to a missed dose that 
cannot be corrected afterward. 

EXAMPLES

•	 A coding agent that can execute terminal commands, modify production code, and delete system files while pursuing its 
assigned objectives63 

•	 A trading agent that autonomously conducts market research, selects trading strategies, and executes buy/sell orders to 
pursue user-defined investment objectives

63	 Vibe coding agents like Replit and Gemini CLI were found to have deleted production databases in spite of 
commands to not modify code. The database deleted by Replit was recovered, and Gemini deleted files in a sandbox 
environment (Orland, 2025).

https://arstechnica.com/information-technology/2025/07/ai-coding-assistants-chase-phantoms-destroy-real-user-data/
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 Reversibility: Reversible
REVERSIBLE

High reversibility means failures can be easily corrected. Post‑hoc detection and correction may be more cost‑effective than 
real‑time monitoring, with a focus on learning from failures rather than preventing them.

AGENT ATTRIBUTES/ACTIONS RISKS

Acts through third-party APIs  
with conditional reversibility

Agents often use API calls to interact with external tools and services, triggering real‑world 
changes such as purchases, bookings, or account updates. Some of these actions can be 
reversed with user effort or within policy windows, for example, canceling a ride, returning 
groceries, or reversing a subscription change. Others, such as non‑refundable bookings or 
permanent account modifications, become effectively irreversible once executed.

Operates in a sandboxed  
or test environment

Agents running in sandboxed or test environments work on temporary copies of data or isolated 
systems therefore, errors can be intercepted or corrected before they affect real systems. Any 
actions disappear when the session ends, leaving no lasting consequences. Examples include 
local‑only simulations, software testing environments, and modeling tools.

EXAMPLES

•	 Most scheduling agents offer calendar entries or task assignments that can be easily adjusted or removed by a user.64 

•	 An agent that produces code commits that can be rolled back through version control systems65 

64	 Microsoft Outlook’s AI scheduling assistant and similar calendar agents can create, modify, or cancel meeting 
invitations through calendar APIs, making their actions reversible because users can delete scheduled events, 
modify attendee lists, or rescind invitations.

65	 GitHub Copilot and other AI coding assistants can generate code commits using APIs and Git versioning, making 
their actions reversible because developers can use standard Git commands like git revert or git reset to undo any 
AI-generated code changes, leveraging the version control system’s inherent rollback capabilities.
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 Affordances: Unconstrained
Affordances refer to what an agent’s architecture “affords” or enables it to do, such as flexible tool use, 
advanced reasoning or planning capabilities, and memory that persists across sessions. 

UNCONSTRAINED

Agents with unconstrained affordances operate with open-ended capabilities. As affordances increase, failures are more likely 
to emerge in subtle or cascading ways, requiring layered failure detection mechanisms to ensure safety.

AGENT ATTRIBUTES/ACTIONS RISKS

Dynamically selects  
and chains tools 

Agents with this architecture can flexibly choose and combine multiple tools or APIs to 
accomplish tasks, rather than following predefined workflows.66 When agents plan, select, and 
execute sequences of tool calls, errors at any stage, such as choosing an inappropriate tool, 
misinterpreting results, or re‑planning mid-run, can compound. These failures can disrupt 
interconnected systems in ways that are hard to predict or reverse. The ability to select tools 
dynamically also makes it more likely that such agents operate across multiple domains or are 
used in unanticipated contexts, which further raises the potential for unexpected risks.67 

Persistent memory  
across sessions 

Agents that can retain and recall information across interactions, enable more continuous 
learning and adaptive behavior. But persistent memory also creates new risks: malicious or 
outdated information can shape future actions, leading to unintended outcomes.68 Agents may 
continue acting on stale policies, preferences, or instructions unless explicitly updated. Attacks 
like memory poisoning, where threat actors inject malicious content into an agent’s stored 
memory, can hijack behavior each time that memory is accessed.69 

Extended reasoning and  
planning capabilities 

Advanced reasoning and planning enable agents to coordinate across multiple objectives 
and run long, adaptive workflows with minimal human intervention. These abilities increase 
autonomy but also raise new risks: agents can over-optimize toward unintended subgoals, 
pursue strategies that diverge from user intent, or continue acting beyond the original task 
scope if goals are loosely specified. It remains unclear whether further advances in reasoning 
will be essential for developing more capable agents as the field evolves.

EXAMPLES

•	 An executive COO agent that dynamically selects and combines APIs, databases, and communication tools to negotiate 
contracts, restructure operations, and execute strategic decisions while maintaining persistent memory of long-term 
business objectives

•	 An accounting agent that autonomously orchestrates tax preparation by selecting appropriate tools, maintaining knowledge 
of compliance requirements, requesting missing documentation from multiple departments, and executing complex 
multi-step workflows for final submission without human intervention

66	 NIST (a), 2025.

67	 In the framework from Kasirzadeh & Gabriel, 2025, operating across different domains and contexts falls under 
“generality,” which denotes the breadth of domains and tasks across which an agent can effectively operate. Shavit et al., 
2023, address cross-domain operation under “environmental complexity,” which they define as encompassing multi-
stakeholder environments, long time horizons, and the use of multiple external tools. 

68	 IBM Consulting, 2025. 

69	 Microsoft (a), 2025.
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 Affordances: Constrained
CONSTRAINED

Agents with constrained affordances operate within tightly scoped parameters. These systems are relatively easier to predict 
and control, so deployers can use less layered failure detection mechanisms compared to agents with more expansive 
affordances.

AGENT ATTRIBUTES/ACTIONS RISKS

Uses predefined tools  
and workflows 

Agents with this architecture are limited to a fixed set of tools and follow structured workflows, 
rather than choosing tools dynamically. These constraints on tool access limit both which tools 
agents can use and how they can use them, restricting tool selection, usage permissions, and 
operational scope. By keeping tool choices and sequences tightly controlled, these agents are 
less flexible but present a smaller risk surface, since they cannot combine tools in unexpected 
ways or trigger novel failure paths. However, failures can still stem from rigid workflows 
breaking when environments change (e.g., a fixed tool sequence that no longer fits user 
contexts), leading to stalled or incomplete task execution.

Operates with episodic  
memory only

Agents that retain information only during a single session, resetting once the interaction 
ends. Without persistent memory, these systems can only handle short, bounded tasks and 
cannot build on past interactions. This limits their autonomy and goal complexity, reducing 
the chance of gradual behavior drift or unexpected capability growth over time. While episodic 
memory limits compounding errors, it can still create risks, agents may repeatedly request or 
store sensitive data each session, increasing privacy exposure and the chance of accidental 
disclosure.70 

EXAMPLES

•	 A general-purpose agent operating within constrained environments with limited session memory and access to only 
predefined tools71 

70	 Note that most current LLMs have primarily episodic memory, which severely limits their ability to pursue 
long-term goals.

71	 Google’s Project Astra maintains 10-minute session memory across multi-modal conversations, adapting to 
real-world visual input while using Google Search, Lens, and Maps based on conversational context (Pichai, 2024).
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Safety-critical domains, like the automotive industry, offer practical lessons for AI agent 

design in balancing safety against utility and cost. This industry has long grappled with the 

tension between dangerous under-engineering and costly over-engineering, and has reached 

a point where vehicle failures constitute a tiny minority of road accidents.72 In particular, 

safety practices in both autonomous systems and the wider automotive industry offer a 

structured model for failure detection in AI agents.

Higher-risk functions in road vehicles require stronger failure detection 
controls. This principle can inform how we assess and manage action-
level risk in AI agents.

Structured risk assessments guide how much failure detection is needed for different system 

functions. The automotive industry operates on the principle of achieving an “absence of 

unreasonable risk.” This acknowledges that absolute safety is infeasible, but acceptable 

levels of risk can be defined through public consensus and formalized in regulation.73 In the 

U.S., this principle underpins standards like ISO 26262 (Road Vehicles – Functional Safety), 

which provides detailed guidance for vehicle manufacturers to assess the risk of individual 

components involved in vehicle operation. A central element of ISO 26262 is requiring manu-

facturers to conduct a Hazard Analysis and Risk Assessment (HARA) process. HARA evaluates 

the safety relevance of a system’s functions by scoring each on three dimensions:

•	 Severity – potential harm to humans if the function fails

•	 Exposure – the probability of the hazard occurring

•	 Controllability – the ability of humans or systems to mitigate the hazard74

Based on these scores, manufacturers assign each function an Automotive Safety Integrity 

Level (ASIL) and design appropriate safety controls.75 Components responsible for steering or 

braking are treated as high-risk and require strong failure detection and backups. Lower-risk 

components, like entertainment systems, are subject to lighter oversight. For autonomous 

72	 As of 2007, vehicle failure or degradation was a critical cause of around 2% of accidents in the US (U.S. Department 
of Transportation, 2015).

73	 See the statutory definition of “motor vehicle safety” in 49 U.S. Code § 30102(a)(9) (Waymo (a), 2023). 

74	 The mapping between HARA and our framework is not exact, but conceptually useful. “Severity” relates to 
“stakes” (the potential harm from failure) and also overlaps with “reversibility.” “Controllability” reflects our focus 
on real-time failure detection, and other mitigations. “Exposure” lacks a direct equivalent, but our concept of 
“affordances”, how flexibly an agent can act, use tools, and access memory, captures a similar intuition about risk 
amplification in unconstrained environments. 

75	 “The definition of the fail-safe property of an automated driving system in the technical report ISO/TR 4804 [31] 
specifies the need to achieve a minimal risk condition in addition to a safe state in the event of a failure” (Pafla et al., 
2021).

3. Safety-critical industries show failure detection can reduce 
harms and provide a foundation for safer agent design

https://uscode.house.gov/view.xhtml?req=granuleid:USC-prelim-title49-section30102&num=0&edition=prelim
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vehicles, ‘human-in-the-loop’ controls are key when a failure is detected, and control of the 

vehicle can be passed to a remote operator.76

Like vehicle manufacturers, AI agent developers can adopt a structured risk assessment, 

calibrating detection efforts based on stakes, reversibility, and affordances, to ensure 

systems fail safely without eroding utility. This approach can help establish a shared 

baseline for acceptable risk while industry or regulators explore more detailed standards. 

The analogy applies most clearly at the action level. Just as the function of steering carries 

more risk than adjusting the radio, certain agent behaviors, such as executing external code 

or making irreversible decisions, present higher stakes and lower reversibility. These actions 

may warrant more comprehensive and layered failure detection than others. However, iden-

tifying failures and interrupting automation too often can erode the value of an AI agent, 

so architectures that ensure that the system can continue in the event of a failure may be 

valuable. One engineering solution is to use backups.

Backups can support fail-safe operation but require detection to 
function properly.

One way safety-critical systems preserve function in the presence of failure is through 

backups — independent components that take over when the primary fails. This strategy 

is common in vehicles:77 backup sensors mitigate the risk of single sensor failure, and 

Waymo uses a redundant secondary computer to take control if the primary system fails in 

automated vehicles.78 Rather than requiring each individual component or function to be fail-

proof, the system as a whole is made robust through monitoring and backups. This principle 

is formalized in ISO 26262, which allows high-risk requirements to be met through multiple 

lower-risk components, as long as their joint probability for failure remains low.79 Crucially, 

comprehensive failure detection is necessary to activate these backups when needed.

76	 Krome et al., 2023.

77	 This is the idea of “redundancy” which can be described as “the ability to provide for the execution of a task if the 
primary unit fails or falters.” (Leveson et al., 2009). Note: We don’t use the term redundancy to avoid conflicts with 
other definitions for the term. 

78	​​ Waymo (b), 2021.

79	 This reflects the idea that two diverse, independently operating systems are less likely to fail in the same way. ISO 
26262 explicitly permits this approach to satisfying high ASIL requirements.
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AI agent architectures can take inspiration from this design choice. For example:

•	 If one agent fails to complete a tool-based task, a backup or “checker” agent could 

attempt the same action with fresh context.80 Alternatively, environmental context 

could be cached as a backup and restored if the agent completed its task incor-

rectly, e.g., git branching and roll-backs in software development. 

•	 For critical user goals, multiple models could independently generate outputs, 

with a monitoring system flagging inconsistencies as potential failure signals.81

Translating these practices to AI agents will require more research and guidance, given 

differences in how agents operate and fail. While AI agents differ from vehicles in how 

failures can stem from shared design flaws rather than isolated hardware faults,82 safety 

practices from the automotive sector still offer a valuable foundation for designing failure 

detection controls. The auto industry’s experience shows how structured risk assessment, 

layered detection, and well-scoped backups can reduce failure rates without sacrificing 

performance. Further technical research and regulatory guidance will be essential to expand 

on these learnings and inform how AI agent developers and deployers should design and 

evaluate failure detection systems.

4. Significant technical research and regulatory guidance must 
be prioritized to close gaps in designing and evaluating failure 
detection for AI agents
Agents pose new, dynamic risks in ways generative AI systems do not. The system’s ability to 

plan, use tools, and take actions across different contexts means that failures can emerge 

dynamically, beyond what developers can address through pre-deployment testing. Today, 

agent developers experiment with real-time monitoring — catching unsafe inputs, invalid 

plans, tool errors, and boundary violations, while allowing for human oversight. These controls 

vary in timing (before, during, or across actions) and method (rule-based vs. behavioral, or 

automated vs. human). But they remain fragmented, untested at scale, and inconsistently 

adopted, even as we have yet to see LLM-based agents deployed widely. Whether the market 

centers on narrow, task-specific agents or general-purpose agents, both trajectories will 

require scalable, credible monitoring practices, though the design and emphasis of those 

practices will differ.

80	 Checker or “inspector” agents have been proposed to correct faulty agent behavior (Huang et al., 2025).

81	 An automotive comparison here might be “sensor fusion,” which is the process of combining data derived from 
disparate sources so that the resulting information has less uncertainty than would be possible if these sources 
were used individually. For example, wheel speed sensors, accelerometers, gyroscopes, and GPS systems are used to 
calculate the speed of a vehicle. For AI agents, multiple models or agents could be used to suggest an action, with a 
safety agent ‘combining data from these disparate sources’ to identify significant discrepancies across the agents 
that may highlight a failure, reducing uncertainty in failure detection. Such an approach could significantly increase 
costs (Frigerio, 2022).

82	 This is called “Common Cause Fault” and highlights the importance of diversity and independence when 
designing backups and integrating redundancy (Frigerio, 2022).
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Closing these gaps will take collective work in three areas: building technical methods, devel-

oping shared approaches to evaluation, and ensuring policies or market incentives support 

adoption.

R&D GAPS: SPECIFIC METHODS THAT NEED DEVELOPMENT 

For researchers and engineers in industry and academia

•	 Advance multi-step detection for goal drift. Spotting misaligned behavior across 

multi-step workflows, such as agents drifting from user goals, remains experi-

mental and underdeveloped. These methods require more technical research and 

evaluation to be better understood and scaled. 

•	 Develop scalable, validated “monitor” models or agents. LLM-based monitors 

inherit brittleness and opacity from the systems they watch. Independent eval-

uation (like we explore below), benchmarks or standards, and privacy-preserving 

design are needed to make such monitors trustworthy and scalable.

EVALUATION GAPS: MEASURING THE EFFECTIVENESS OF FAILURE DETECTION

For standards bodies, industry consortia, and assurance providers best positioned to lead this work

•	 We lack a clear understanding of when human-in-the-loop controls meaning-

fully reduce risks from agents. Human oversight is often invoked as a safeguard 

but its effectiveness hinges on context — particularly for irreversible or high-stakes 

actions. Key unknowns include how much human oversight actually reduces 

failures in real-world settings, whether humans step in quickly enough, and how to 

avoid handoffs that slow or complicate the system. One proposed action can be to 

conduct pilot studies across domains (e.g., finance, healthcare, customer support) 

to measure effectiveness of human oversight, prioritizing evaluations of tasks by 

stakes, reversibility, and agent affordances.

•	 Agents performing high-stakes actions require external assurance that their 

real-time monitoring controls actually work.83 Assurance refers to processes 

that independently validate whether a system’s safeguards work as intended, 

often through documented evidence (“safety cases”) and accredited assurance 

providers. As discussed earlier, other sectors show how this can work. In the 

automotive industry, car functions that carry higher safety risks are tested and 

certified more rigorously, with external assessors reviewing evidence that the 

systems’ safety controls and backups work reliably.84 For agents, similar tiered 

approaches could assign higher scrutiny to riskier tasks or actions, for example, 

83	 Effectiveness of failure detection must be measured, not assumed. AI-driven content moderation systems can 
fail quietly in practice, even when widely deployed. A study of Facebook’s automated moderation during the January 6 
Capitol riot found that its machine-learning models and automated downranking prevented only 21% of engagement 
with harmful posts, allowing most problematic content to circulate before intervention, see Goldstein et al., 2023.

84	 For example, UL 4600 defines how to build and evaluate a safety argument for autonomous vehicles, with 
redundancy and fault detection and mitigation in section 10.3 - 10.4. Additionally, ISO/PAS 8800 provides guidance on 
how to extend a safety case for AI systems, with a greater focus on processes and product characteristics (Critical 
Systems Labs, 2025). However, ISO 26262 is more ubiquitous.
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financial transactions or decisions affecting health, and require validation that 

failure detection controls are in place and effective. While regulatory drivers for 

second- or third-party assurance remain limited, market incentives (such as repu-

tational advantage or trust in sensitive sectors) may motivate voluntary adoption, 

especially as domain-specific agent applications scale.85

•	 Without standardized evaluations, we cannot know whether real-time failure 

detections work as intended. Researchers have called for a richer evaluation 

science for agents, where tests simulate real-world complexity, multi-step actions, 

and test for varied risks.86 Building on this, evaluations could assess the reliability 

of runtime monitoring itself, not only agent performance. This could test whether 

its monitoring layers catch failures, avoid unnecessary human interventions, and 

respond fast enough to matter.

POLICY GAPS: GOVERNMENT LEVERS TO DRIVE ADOPTION 

For regulators, agencies, and multilateral bodies

•	 Clarify expectations for human oversight.  Article 14 of the EU AI Act applies to high- 

risk AI systems, requiring them to be “effectively overseen by natural persons.” 

Agents may fall within this category if deployed in high-risk domains, or if uninten-

tionally used in such settings, making these requirements relevant. Yet Article 14’s 

emphasis on human oversight risks overloading individuals tasked with monitoring 

outputs.87 Regulators like the EU AI Office could issue guidance on what counts as 

adequate observability, when human approval must be mandatory, and how auto-

mated detection can complement oversight for high- versus low-stakes actions.

•	 Use failure detection for clarifying liability. Legal liability regimes like tort and 

consumer protection law, and new regulations like the EU AI Act, provide gover-

nance frameworks for AI agents, but clearer guidance is needed on what constitutes 

reasonable standard of care for their development and deployment.88 Over time, 

integrating real-time failure detection into human oversight expectations can 

strengthen accountability and hold developers and deployers liable if/when 

preventable failures come to pass. As occurred with automobiles and other indus-

tries, explicit liability rules can help incentivize accountability.

•	 Incentivize incident reporting and root-cause tracking. Understanding why 

agents fail is critical for societal awareness and harm prevention. The EU’s General-

Purpose AI Code of Practice already calls for reporting the “chain of events” behind 

incidents and conducting root-cause analysis, including inputs and systemic risk 

85	 The report notes how seatbelt standards first emerged in the automotive industry before laws required car 
manufacturers and drivers to use them (Ada Lovelace Institute, 2025). While assurance for AI is still mostly voluntary, 
Article 61 of the EU AI Act requires high‑risk systems to log incidents and monitor their behavior over time, which 
could become a foundation for more formal assurance and validation of failure detection controls in AI agents.

86	 Kapoor et al., 2024.

87	 See Article 14, EU AI Act.

88	 Cihon, 2024.

https://artificialintelligenceact.eu/article/14/
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failures.89 Policymakers could go further by requiring or incentivizing deployers 

to design failure detection systems that capture detailed logs and traces of an 

agent’s actions, so incident reporting is grounded in what the system actually did 

rather than just the final outcome.

•	 Promote transparency on failure detection practices. Model providers already 

disclose performance via system cards. Policymakers could encourage or require 

agent developers to include how their failure detection controls were evaluated, 

the contextual factors tested, and the rationale for their choices, building on trans-

parency measures in the EU general-purpose AI Code of Practice.

•	 Fund testbeds to evaluate and scale failure detection. The U.S. AI Action Plan 

calls for the Center for AI Standards and Innovation (CAISI) to invest in break-

throughs in AI interpretability, control, and robustness. The Action Plan also calls 

for secure, sector-specific testbeds to advance safe adoption.90 AI Safety Institutes 

should consider piloting failure detection controls, testing trade-offs (cost, reli-

ability, privacy), and validating their effectiveness for narrow, high-stakes domains 

before wider deployment.91

•	 Track market incentives for cost-effective monitoring. Real-time monitoring 

adds expense (development, latency), so firms may underinvest absent clear 

returns on investment. Policymakers and civil society can use the stakes–revers-

ibility–affordances framework to track where market incentives naturally emerge. 

They can also identify where to amplify those incentives through procurement 

preferences or by supporting insurance and certification schemes, helping drive 

investment in failure detection, especially for high-stakes uses.

89	 See Measure 9.2 Safety and Security Chapter (European Union AI Office, 2024).

90	 White House, 2025.

91	 See ongoing work on agents at the AI Safety Institutes: UK AISI (a), 2025; UK AISI (b), 2025; NIST (a), 2025; NIST (b) 
2025.
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Conclusion and Limitations
This paper makes three contributions: 

1.	 Defining levels of environmental influence in AI agents as a threshold for when 

failure detection is warranted

2.	 Introducing a stakes–reversibility–affordances framework with examples to show 

when detection is most necessary

3.	 Outlining a layered schema for failure detection across agent planning, tool use, 

and execution. 

Advancing these approaches will require building technical capacity, shared evaluation 

practices, and baseline norms so these controls are reliable and scalable. These recommen-

dations are necessarily early-stage, given that real-world deployments of LLM-based agents 

remain limited. We do not examine how monitoring layers affect speed, cost, or user expe-

rience across contexts, nor does it prescribe specific detection mechanisms for every task, 

since architectures are still evolving. Finally, we flag emerging agent capabilities (such as 

complex multi-agent interaction) that current mitigations may not yet fully address, under-

scoring the need for forward-looking safety measures.

Despite these limitations, we need a public discussion about architectural norms before 

agent deployments scale. This debate must involve a wider set of stakeholders than those 

building the systems. Architectural decisions about safety cannot be left solely to a small 

circle of developers. Acting now, through research, evaluation, and policy, can help ensure 

risk management practices evolve alongside the systems they are meant to govern.
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