Guidelines for AI and Shared Prosperity



Home

Our economic future is too important to leave to chance.

AI has the potential to radically disrupt people’s economic lives in both positive and negative ways. It remains to be determined which of these we’ll see more of. In the best scenario, AI could widely enrich humanity, equitably equipping people with the time, resources, and tools to pursue the goals that matter most to them.

Our current moment serves as a profound opportunity — one that we will miss if we don’t act now. To achieve a better future with AI, we must put in the work today.

In medicine and other fields, new innovations are put through rigorous testing to ensure they are fit for purpose. The AI community, however, has no established practice for assessing the impact of AI systems on inequality or job quality. Without one, it remains difficult to ensure AI deployments are bringing us closer to the economic future we want to live in.

You can help guide AI’s impact on jobs

AI developers, AI users, policymakers, labor organizations, and workers can all help steer AI so its economic benefits are shared by all. Using Partnership on AI’s (PAI) Shared Prosperity Guidelines, these stakeholders can minimize the chance that individual AI systems worsen shared prosperity-relevant outcomes.

The Shared Prosperity Guidelines can be used by following a guided, three-step process.

 

Get Involved

Partnership on AI needs your help to refine, test, and drive adoption of the Guidelines for AI and Shared Prosperity.

Fill out the form below to share your feedback on the Guidelines, ask about collaboration opportunities, and receive updates about events and other future work by the AI and Shared Prosperity Initiative.

Get in Touch

Guidelines for AI and Shared Prosperity

Home

Step 1: Learn About the Guidelines

The Need for the Guidelines

The Origin of the Guidelines

Design of the Guidelines

Key Principles for Using the Guidelines

Step 2: Apply the Job Impact Assessment Tool

Instructions for Performing a Job Impact Assessment

Signals of Opportunity to Advance Shared Prosperity

Signals of Risk to Shared Prosperity

STEP 3: Stakeholder-Specific Recommendations

For AI-Creating Organizations

For AI-Using Organizations

For Policymakers

For Labor Organizations and Workers

Get Involved

Endorsements

Acknowledgments

AI and Shared Prosperity Initiative’s Steering Committee

Sources Cited

  1. ​​Acemoglu, D. (Ed.). (2021). Redesigning AI: Work, democracy, and justice in the age of automation. Boston Review.
  2. Korinek, A., and Stiglitz, J.E. (2020, April). Steering technological progress. In NBER Conference on the Economics of AI.
  3. Acemoglu, D., and Johnson, S. (2023). Power and Progress: Our Thousand-Year Struggle Over Technology and Prosperity. Public Affairs, New York.
  4. International Labour Organization. (n.d.). Decent work. https://tinyurl.com/yur776yd
  5. US Department of Commerce and US Department of Labor. (n.d.). Department of Commerce and Department of Labor Good Jobs Principles, DOL. https://tinyurl.com/mtbpemkn
  6. Institute for the Future of Work. (n.d.). The Good Work Charter. https://tinyurl.com/ycxtaax4
  7. Klinova, K., and Korinek, A. (2021). AI and shared prosperity. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (pp. 645-651).
  8. Bell, S. A. (2022). AI and Job Quality: Insights from Frontline Workers. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4337611
  9. Partnership on AI, 2021. Redesigning AI for Shared Prosperity: an Agenda. https://partnershiponai.org/paper/redesigning-ai-agenda/
  10. Negrón, W. (2021). Little Tech is Coming for Workers. Coworker.org. https://home.coworker.org/wp-content/uploads/2021/11/Little-Tech-Is-Coming-for-Workers.pdf.
  11. Korinek, A., 2022. How innovation affects labor markets: An impact assessment.
  12. Brynjolfsson, E., Collis, A., Diewert, W.E., Eggers, F., and Fox, K.J. (2019). GDP-B: Accounting for the value of new and free goods in the digital economy (No. w25695). National Bureau of Economic Research.
  13. Acemoglu, D., and Restrepo, P. (2019). Automation and new tasks: How technology displaces and reinstates labor. Journal of Economic Perspectives, 33(2), 3-30.
  14. Bell, S. A. (2022). AI and Job Quality: Insights from Frontline Workers. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4337611
  15. Valentine, M., and Hinds, R. (2022). How Algorithms Change Occupational Expertise by Prompting Explicit Articulation and Testing of Experts’ Theories. https://tinyurl.com/pxyr8ev3
  16. Autor, D. (2022). The labor market impacts of technological change: From unbridled enthusiasm to qualified optimism to vast uncertainty (No. w30074). National Bureau of Economic Research.
  17. Mateescu, A., and Elish, M. (2019). AI in context: the labor of integrating new technologies.
  18. Elish, M. C. (2019). Moral crumple zones: Cautionary tales in human-robot interaction (pre-print). Engaging Science, Technology, and Society (pre-print).
  19. World Bank. (2017). World development report 2018: Learning to realize education's promise. The World Bank.
  20. Korinek, A., and Stiglitz, J.E. (2021). Artificial intelligence, globalization, and strategies for economic development (No. w28453). National Bureau of Economic Research.
  21. Diao, X., Ellis, M., McMillan, M. S., and Rodrik, D. (2021). Africa's manufacturing puzzle: Evidence from Tanzanian and Ethiopian firms (No. w28344). National Bureau of Economic Research.
  22. Rodrik, D. (2022). 4 Prospects for global economic convergence under new technologies. An inclusive future? Technology, new dynamics, and policy challenges, 65.
  23. O'Keefe, C., Cihon, P., Garfinkel, B., Flynn, C., Leung, J., and Dafoe, A. (2020, February). The windfall clause: Distributing the benefits of AI for the common good. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (pp. 327-331).
  24. Bell, S. A. (2022). AI and Job Quality: Insights from Frontline Workers. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4337611
  25. Scherer, M., and Brown, L. X. (2021). Warning: Bossware May Be Hazardous to Your Health. Center for Democracy and Technology. https://cdt.org/wp-content/uploads/2021/07/2021-07-29-Warning-Bossware-May-Be-Hazardous-To-Your-Health-Final.pdf
  26. Bell, S. A. (2022). AI and Job Quality: Insights from Frontline Workers. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4337611
  27. Acemoglu, D., and Restrepo, P. (2022). Tasks, automation, and the rise in US wage inequality. Econometrica, 90(5), 1973-2016.
  28. Valentine, M., and Hinds, R. (2022). How Algorithms Change Occupational Expertise by Prompting Explicit Articulation and Testing of Experts’ Theories. https://tinyurl.com/pxyr8ev3
  29. Nurski, L., and Hoffmann, M. (2022). The Impact of Artificial Intelligence on the Nature and Quality of Jobs. Working Paper. Bruegel. https://tinyurl.com/jxayzdcz
  30. Pritchett, L. (2020). The future of jobs is facing one, maybe two, of the biggest price distortions ever. Middle East Development Journal, 12(1), 131-156.
  31. Eloundou, T., Manning, S., Mishkin, P., and Rock, D. (2023). GPTs are GPTs: An early look at the labor market impact potential of large language models. arXiv preprint arXiv:2303.10130.
  32. Noy, S., and Zhang, W. (2023). Experimental evidence on the productivity effects of generative artificial intelligence. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4375283
  33. Korinek, A. (2023). Language models and cognitive automation for economic research (No. w30957). National Bureau of Economic Research.
  34. Case, A., and Deaton, A. (2020). Deaths of Despair and the Future of Capitalism. Princeton University Press.
  35. Gihleb, R., Giuntella, O., Stella, L., and Wang, T. (2022). Industrial robots, workers’ safety, and health. Labour Economics, 78, 102205.
  36. Pritchett, L. (2020). The future of jobs is facing one, maybe two, of the biggest price distortions ever. Middle East Development Journal, 12(1), 131-156.
  37. Pritchett, L. (2023). Choose People. LaMP Forum. https://lampforum.org/2023/03/02/choose-people/
  38. Gray, M. L., and Suri, S. (2019). Ghost work: How to stop Silicon Valley from building a new global underclass. Eamon Dolan Books.
  39. Dubal, V. (2023). On Algorithmic Wage Discrimination. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4331080
  40. Bell, S. A. (2022). AI and Job Quality: Insights from Frontline Workers. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4337611
  41. Schneider, D., and Harknett, K. (2017, April). Schedule Instability and Unpredictability and Worker and Family Health and Well-being. In PAA 2017 Annual Meeting. PAA.
  42. Williams, J. et al. (2022). Stable scheduling study: Health outcomes report. https://ssrn.com/abstract=4019693
  43. Bell, S. A. (2022). AI and Job Quality: Insights from Frontline Workers. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4337611
  44. Dzieza, J. (2020). Robots aren’t taking our jobs — They’re becoming our bosses. The Verge. https://tinyurl.com/5a9mxeuz
  45. Levy, K. (2022). Data Driven: truckers, technology, and the new workplace surveillance. Princeton University Press.
  46. Moore, P.V. (2017). The quantified self in precarity: Work, technology and what counts. Routledge.
  47. Scherer, M., and Brown, L. X. (2021). Warning: Bossware May Be Hazardous to Your Health. Center for Democracy and Technology. https://cdt.org/wp-content/uploads/2021/07/2021-07-29-Warning-Bossware-May-Be-Hazardous-To-Your-Health-Final.pdf.
  48. Brand, J., Dencik, L. and Murphy, S. (2023). The Datafied Workplace and Trade Unions in the UK. Data Justice Lab. https://datajusticeproject.net/wp-content/uploads/sites/30/2023/04/Unions-Report_final.pdf.
  49. Nurski, L., and Hoffmann, M. (2022). The Impact of Artificial Intelligence on the Nature and Quality of Jobs. Working Paper. Bruegel. https://tinyurl.com/2a943p8f
  50. Nanavaty, R. (2023). Interview with Reema Nanavaty, Self-Employed Women’s Association.
  51. Beane, M. (2022). Today's Robotic Surgery Turns Surgical Trainees into Spectators: Medical Training in the Robotics Age Leaves Tomorrow's Surgeons Short on Skills. IEEE Spectrum, 59(8), 32-37. https://tinyurl.com/wyhxukhk
  52. Gray, M. L., and Suri, S. (2019). Ghost work: How to stop Silicon Valley from building a new global underclass. Eamon Dolan Books.
  53. Center for Democracy and Technology et al. 2022
  54. Buolamwini, J., and Gebru, T. (2018, January). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on fairness, accountability and transparency (pp. 77-91). PMLR.
  55. Benjamin, R. (2019). Race After Technology: Abolitionist Tools for the New Jim Code. John Wiley and Sons.
  56. Keyes, O. (2018). The misgendering machines: Trans/HCI implications of automatic gender recognition. Proceedings of the ACM on human-computer interaction, 2(CSCW), 1-22.
  57. Rosales, A., and Fernández-Ardèvol, M. (2019). Structural ageism in big data approaches. Nordicom Review, 40(s1), 51-64.
  58. Klinova, K. (2022) Governing AI to Advance Shared Prosperity. In Justin B. Bullock et al. (Eds.), The Oxford Handbook of AI Governance. Oxford Handbooks.
  59. Park, H., Ahn, D., Hosanagar, K., and Lee, J. (2021, May). Human-AI interaction in human resource management: Understanding why employees resist algorithmic evaluation at workplaces and how to mitigate burdens. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1-15).
  60. Bernhardt, A., Suleiman, R., and Kresge, L. (2021). Data and algorithms at work: the case for worker technology rights. https://laborcenter.berkeley.edu/wp-content/uploads/2021/11/Data-and-Algorithms-at-Work.pdf.
  61. Colclough, C.J. (2022). Righting the Wrong: Putting Workers’ Data Rights Firmly on the Table. https://tinyurl.com/26ycnpv2
  62. Pasquale, F. (2020). New Laws of Robotics. Harvard University Press.
  63. Rodrik, D. (2022). 4 Prospects for global economic convergence under new technologies. An inclusive future? Technology, new dynamics, and policy challenges, 65.
  64. Anderson, E. (2019). Private Government: How Employers Rule Our Lives (and Why We Don’t Talk about it). Princeton University Press.
  65. Korinek, A. (2022). How innovation affects labor markets: An impact assessment.
  66. Institute for the Future of Work. (2023). Good Work Algorithmic Impact Assessment Version 1: An approach for worker involvement. https://tinyurl.com/mr4yn5yt
  67. Bernhardt, A., Suleiman, R., and Kresge, L. (2021). Data and algorithms at work: the case for worker technology rights. https://laborcenter.berkeley.edu/wp-content/uploads/2021/11/Data-and-Algorithms-at-Work.pdf.
  68. Colclough, C.J. (2022). Righting the Wrong: Putting Workers’ Data Rights Firmly on the Table. https://tinyurl.com/26ycnpv2
  69. Brand, J., Dencik, L. and Murphy, S. (2023). The Datafied Workplace and Trade Unions in the UK. Data Justice Lab. https://datajusticeproject.net/wp-content/uploads/sites/30/2023/04/Unions-Report_final.pdf.
  70. Park, H., Ahn, D., Hosanagar, K., and Lee, J. (2021, May). Human-AI interaction in human resource management: Understanding why employees resist algorithmic evaluation at workplaces and how to mitigate burdens. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1-15).
  71. Mateescu, A., and Elish, M. (2019). AI in context: the labor of integrating new technologies.
  72. Elish, M. C. (2019). Moral crumple zones: Cautionary tales in human-robot interaction (pre-print). Engaging Science, Technology, and Society (pre-print).
Table of Contents

Implementing Responsible Data Enrichment Practices at an AI Developer: The Example of DeepMind

Sonam Jindal

Executive Summary

Executive Summary

As demand for AI services grows, so, too, does the need for the enriched data used to train and validate machine learning (ML) models. While these datasets can only be prepared by humans, the data enrichment workers who do so (performing tasks like data annotation, data cleaning, and human review of algorithmic outputs) are an often-overlooked part of the development lifecycle, frequently working in poor conditions continents away from AI-developing companies and their customers.

Workers

For the purposes of this white paper we refer to individuals completing data enrichment as “workers.” In doing so, we recognize the variety of employment statuses that can exist in the data enrichment industry, including independent contractors on self-service crowdsourcing platforms, subcontractors of data enrichment providers, and full-time employees.

Last year, the Partnership on AI (PAI) published “
Responsible Sourcing of Data Enrichment Services
,” a white paper exploring how the choices made by AI practitioners could improve the working conditions of these data enrichment professionals. This case study documents an effort to put that paper’s recommendations into practice at one AI developer: DeepMind, a PAI Partner.

In addition to creating guidance for responsible AI development and deployment, PAI’s Theory of Change includes collaborating with Partners and others to implement our recommendations in practice. From these collaborations, PAI collects findings which help us further develop our curriculum of responsible AI resources. This case study serves as one such resource, offering a detailed account of DeepMind’s process and learnings for other organizations interested in improving their data enrichment sourcing practices.

Sourcing enriched data
Sourcing data enrichment work is a process that requires a number of steps including, but not limited to, defining the enrichment goal, choosing the enrichment provider, defining the enrichment tools, defining the technical requirements, writing instructions, ensuring that instructions make sense, setting worker hours, determining time spent on a particular task, communicating with enrichment workers, rejecting or accepting work, defining a project budget, determining workers’ payment, checking work quality, and providing performance feedback.

After assessing DeepMind’s existing practices and identifying what was needed to consistently source enriched data responsibly, PAI and DeepMind worked together to prototype the necessary policies and resources. The Responsible Data Enrichment Implementation Team (which consisted of PAI and members of DeepMind’s Responsible Development and Innovation team, which we will refer to as “the implementation team” in this case study) then collected multiple rounds of feedback, testing the following outputs and changes with smaller teams before they were rolled out organization-wide:

A two-page document offering fundamental guidelines for responsible data enrichment sourcing
An updated ethics review process
A checklist detailing what constitutes “good instructions” for data enrichment workers
A table to easily compare the salient features of various data enrichment platforms and vendors
A spreadsheet listing the living wages in areas where data enrichment workers commonly live

Versions of these resources have been added to PAI’s responsible data enrichment sourcing library and are now available for any organization that wishes to improve its data enrichment sourcing practices.

Ultimately, DeepMind’s multidisciplinary teams developing AI research, including applied AI researchers (or “researchers” for the purposes of this case study, though this term might be defined differently elsewhere) said that these new processes felt efficient and helped them think more deeply about the impact of their work on data enrichment workers. They also expressed gratitude for centralized guidance that had been developed through a rigorous process, removing the burden for them to individually figure out how to set up data enrichment projects.

Data Enrichment

Data enrichment is curation of data for the purposes of machine learning model development that requires human judgment and intelligence. This can include data preparation, cleaning, labeling, and human review of algorithmic outputs, sometimes performed in real time.

Examples of data enrichment work:

Data preparation, annotation, cleaning, and validation:
Intent recognition, Sentiment tagging, Image labeling

Human review (sometimes referred to as “human in the loop”):
Content moderation, Validating low confidence algorithmic predictions, Speech-to-text error correction

While organizations hoping to adopt these resources may want to similarly engage with their teams to make sure their unique use cases are accounted for, we hope these tested resources will provide a better starting point to incorporate responsible data enrichment practices into their own workflows. Furthermore, to identify where the implemented changes fall short of ideal, we plan to continue developing this work through engagement and convenings. To stay informed, sign up for updates on PAI’s Responsible Sourcing Across the Data Supply Line Workstream page.

This case study details the process by which DeepMind adopted responsible data enrichment sourcing recommendations as organization-wide practice, how challenges that arose during this process were addressed, and the impact on the organization of adopting these recommendations. By sharing this account of how DeepMind did it and why they chose to invest time to do so, we intend to inspire other organizations developing AI to undertake similar efforts. It is our hope that this case study and these resources will empower champions within AI organizations to create positive change.

Implementing Responsible Data Enrichment Practices at an AI Developer: The Example of DeepMind

Executive Summary

Background

Importance of Data Enrichment Workers and Pathways to Improve Working Conditions

Case Study as a Method of Increasing Transparency and Sharing Actionable Guidance

Background on DeepMind’s Motivations

Process and Outcomes of the DeepMind and PAI Collaboration

Changes and Resources Introduced to Support Adoption of Recommendations

Two-Page Data Enrichment Sourcing Guidelines Document

Adapted Review Process

Good Instructions Checklist

Vendor and Platform Feature Comparison Table

Living Wages Spreadsheet

Addressing Practical Complexities That Arose While Finalizing Changes

Assessing Clarity of Guidelines and Rolling Out Changes Organization-Wide

Reactions, Impact, and Next Steps

Response from Research and Development Teams

Key Stakeholders/Leadership Reflections and Motivations

Continued Work for DeepMind

Limitations of Case Study Applicability

Conclusion

Acknowledgements

Appendix A: Initial Discovery Process and Getting Reactions to PAI Responsible Sourcing Recommendations

Sources Cited

  1. Geiger, R. Stuart, et al. “Garbage in, garbage out? Do machine learning application papers in social computing report where human-labeled training data comes from?.” Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. 2020
  2. Denton, Emily, et al. “On the genealogy of machine learning datasets: A critical history of ImageNet.” Big Data u0026amp; Society 8.2 (2021): 20539517211035955.
  3. Hutchinson, Ben, et al. “Towards accountability for machine learning datasets: Practices from software engineering and infrastructure.” Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. 2021
  4. Gray, Mary L., and Siddharth Suri. Ghost work: How to stop Silicon Valley from building a new global underclass. Eamon Dolan Books, 2019
  5. Geiger, R. Stuart, et al. “Garbage in, garbage out? Do machine learning application papers in social computing report where human-labeled training data comes from?.” Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. 2020
Table of Contents
1
2
3
4
5
6
7
8

AI and Job Quality

Insights from Frontline Workers

PAI Staff

Executive Summary

Based on an international study of on-the-job experiences with AI, this report draws from workers’ insights to point the way toward a better future for workplace AI. In addition to identifying common themes among workers’ stories, it provides guidance for key stakeholders who want to make a positive impact. These opportunities for impact can be downloaded individually as audience-specific summaries below.

Opportunities for impact for:

Across industries and around the world, AI is changing work. In the coming years, this rapidly advancing technology has the potential to fundamentally reshape humanity’s relationship with labor. As highlighted by previous Partnership on AI (PAI) research, however, the development and deployment of workplace AI often lacks input from an essential group of experts: the people who directly interact with these systems in their jobs.

Bringing the perspectives of workers into this conversation is both a moral and pragmatic imperative. Despite the direct impact of workplace AI on them, workers rarely have direct influence in AI’s creation or decisions about its implementation. This neglect raises clear concerns about unforeseen or overlooked negative impacts on workers. It also undermines the optimal use of AI from a corporate perspective.

This PAI report, based on an international study of on-the-job experiences with AI, seeks to address this gap. Through journals and interviews, workers in India, sub-Saharan Africa, and the United States shared their stories about workplace AI. From their reflections, PAI identified five common themes:

  1. Executive and managerial decisions shape AI’s impacts on workers, for better and worse. This starts with decisions about business models and operating models, continues through technology acquisitions and implementations, and finally manifests in direct impacts to workers.
  2. Workers have a genuine appreciation for some aspects of AI in their work and how it helps them in their jobs. Their spotlights here point the way to more mutually beneficial approaches to workplace AI.
  3. Workplace AI’s harms are not new or novel — they are repetitions or extensions of harms from earlier technologies and, as such, should be possible to anticipate, mitigate, and eliminate.
  4. Current implementations of AI often serve to reduce workers’ ability to exercise their human skills and talents. Skills like judgment, empathy, and creativity are heavily constrained in these implementations. To the extent that the future of AI is intended to increase humans’ ability to use these talents, the present of AI is sending many workers in the opposite direction.
  5. Empowering workers early in AI development and implementation increases the opportunities to attain the aforementioned benefits and avoid the harms. Workers’ deep experience in their own roles means they should be treated as subject-matter experts throughout the design and implementation process.

In addition, PAI drew from these themes to offer opportunities for impact for the major stakeholders in this space:

  1. AI-implementing companies, who can commit to AI deployments that do not decrease employee job quality.
  2. AI-creating companies, who can center worker well-being and participation in their values, practices, and product designs.
  3. Workers, unions, and worker organizers, who can work to influence and participate in decisions about technology purchases and implementations.
  4. Policymakers, who can shape the environments in which AI products are developed, sold, and implemented.
  5. Investors, who can account for the downside risks posed by practices harmful to workers and the potential value created by worker-friendly technologies.

The actions of each of these groups have the potential to both increase the prosperity enabled by AI technologies and share it more broadly. Together, we can steer AI in a direction that ensures it will benefit workers and society as a whole.

AI and Job Quality

Executive Summary

Introduction

The need for workers’ perspectives on workplace AI

The contributions of this report

Our Approach

Key research questions

Research methods

Site selection

Who we learned from

Participant recruitment

Major Themes and Findings

Theme 1: Executive and managerial decisions shape AI’s impacts on workers, for better and worse

Theme 2: Workers appreciate how some uses of AI have positively changed their jobs

Theme 3: Workplace AI harms repeat, continue, or intensify known possible harms from earlier technologies

Theme 4: Current implementations of AI in work are reducing workers’ opportunities for autonomy, judgment, empathy, and creativity

Theme 5: Empowering workers early in AI development and implementation increases opportunities to implement AI that benefits workers as well as their employers

Opportunities for Impact

Stakeholder 1: AI-implementing companies

Stakeholder Group 2: AI-creating companies

Stakeholder Group 3: Workers, unions, and worker organizers

Stakeholder Group 4: Policymakers

Stakeholder Group 5: Investors

Conclusion

Acknowledgements

Appendix 1: Detailed Site and Technology Descriptions

Appendix 2: Research Methods

Sources Cited

  1. Daniel Zhang et al., “The AI Index 2022 Annual Report” (AI Index Steering Committee, Stanford Institute for Human-Centered AI, Stanford University, March 2022), https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-AI-Index-Report_Master.pdf.
  2. Michael Chui et al., “Global AI Survey 2021,” Survey (McKinsey u0026amp; Company, December 8, 2021), https://ceros.mckinsey.com/global-ai-survey-2020-a-desktop-3-1/p/1
  3. Jacques Bughin et al., “Artificial Intelligence: The Next Digital Frontier?,” Discussion Paper (McKinsey Global Institute, June 2017), https://www.mckinsey.com/~/media/mckinsey/industries/advanced%20electronics/our%20insights/how%20artificial%20intelligence%20can%20deliver%20real%20value%20to%20companies/mgi-artificial-intelligence-discussion-paper.ashx
  4. Partnership on AI, “Redesigning AI for Shared Prosperity: An Agenda” (Partnership on AI, May 2021), https://partnershiponai.org/paper/redesigning-ai-agenda/
  5. David Autor, David A. Mindell, and Elisabeth B. Reynolds, The Work of the Future: Building Better Jobs in an Age of Intelligent Machines (The MIT Press, 2022), https://doi.org/10.7551/mitpress/14109.001.0001
  6. Daniel Zhang et al., “The AI Index 2022 Annual Report” (AI Index Steering Committee, Stanford Institute for Human-Centered AI, Stanford University, March 2022), https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-AI-Index-Report_Master.pdf
  7. Lant Pritchett, “The Future of Jobs Is Facing One, Maybe Two, of the Biggest Price Distortions Ever,” Middle East Development Journal 12, no. 1 (January 2, 2020): 131–56, https://doi.org/10.1080/17938120.2020.1714347
  8. James K. Harter, Frank L. Schmidt, and Theodore L. Hayes, “Business-Unit-Level Relationship between Employee Satisfaction, Employee Engagement, and Business Outcomes: A Meta-Analysis,” Journal of Applied Psychology 87, no. 2 (2002): 268–79, https://doi.org/10.1037/0021-9010.87.2.268
  9. Kaoru Ishikawa, What Is Total Quality Control? The Japanese Way, trans. David John Lu (Englewood Cliffs, N.J.: Prentice-Hall, 1985)
  10. Gary P. Pisano, The Development Factory: Unlocking the Potential of Process Innovation (Harvard Business Press, 1997)
  11. Terje Slåtten and Mehmet Mehmetoglu, “Antecedents and Effects of Engaged Frontline Employees: A Study from the Hospitality Industry,” in New Perspectives in Employee Engagement in Human Resources (Emerald Group Publishing, 2015)
  12. Kayhan Tajeddini, Emma Martin, and Levent Altinay, “The Importance of Human-Related Factors on Service Innovation and Performance,” International Journal of Hospitality Management 85 (February 1, 2020): 102431, https://doi.org/10.1016/j.ijhm.2019.102431
  13. Sergio Fernandez and David W. Pitts, “Understanding Employee Motivation to Innovate: Evidence from Front Line Employees in United States Federal Agencies,” Australian Journal of Public Administration 70, no. 2 (2011): 202–22, https://doi.org/10.1111/j.1467-8500.2011.00726.x
  14. Edward P. Lazear, “Compensation and Incentives in the Workplace,” Journal of Economic Perspectives 32, no. 3 (August 2018): 195–214, https://doi.org/10.1257/jep.32.3.195
  15. Joan Robinson, The Economics of Imperfect Competition (Springer, 1969)
  16. José Azar, Ioana Marinescu, and Marshall I. Steinbaum, “Labor Market Concentration,” Working Paper, Working Paper Series (National Bureau of Economic Research, December 2017), https://doi.org/10.3386/w24147
  17. Alan Manning, Monopsony in Motion: Imperfect Competition in Labor Markets, Monopsony in Motion (Princeton University Press, 2013), https://doi.org/10.1515/9781400850679
  18. Caitlin Lustig et al., “Algorithmic Authority: The Ethics, Politics, and Economics of Algorithms That Interpret, Decide, and Manage,” in Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA ’16 (New York, NY, USA: Association for Computing Machinery, 2016), 1057–62, https://doi.org/10.1145/2851581.2886426
  19. Aiha Nguyen, “The Constant Boss: Work Under Digital Surveillance” (Data and Society, May 2021), https://datasociety.net/library/the-constant-boss/
  20. Matt Scherer, “Warning: Bossware May Be Hazardous to Your Health” (Center for Democracy u0026amp; Technology, July 2021), https://cdt.org/wp-content/uploads/2021/07/2021-07-29-Warning-Bossware-May-Be-Hazardous-To-Your-Health-Final.pdf
  21. Mary L. Gray and Siddharth Suri, Ghost Work: How to Stop Silicon Valley from Building a New Global Underclass (Houghton Mifflin Harcourt, 2019)
  22. Alexandra Mateescu and Aiha Nguyen, “Algorithmic Management in the Workplace,” Explainer (Data and Society, February 2019), https://datasociety.net/wp-content/uploads/2019/02/DS_Algorithmic_Management_Explainer.pdf
  23. Daniel Schneider and Kristen Harknett, “Schedule Instability and Unpredictability and Worker and Family Health and Wellbeing,” Working Paper (Washington Center for Equitable Growth, September 2016), http://cdn.equitablegrowth.org/wp-content/uploads/2016/09/12135618/091216-WP-Schedule-instability-and-unpredictability.pdf
  24. V.B. Dubal. “Wage Slave or Entrepreneur?: Contesting the Dualism of Legal Worker Identities.” California Law Review 105, no. 1 (2017): 65–123, https://www.jstor.org/stable/24915689
  25. Ramiro Albrieu, ed., Cracking the Future of Work: Automation and Labor Platforms in the Global South, 2021, https://fowigs.net/wp-content/uploads/2021/10/Cracking-the-future-of-work.-Automation-and-labor-platforms-in-the-Global-South-FOWIGS.pdf
  26. Phoebe V. Moore, “OSH and the Future of Work: Benefits and Risks of Artificial Intelligence Tools in Workplaces,” Discussion Paper (European Agency for Safety and Health at Work, 2019), https://osha.europa.eu/en/publications/osh-and-future-work-benefits-and-risks-artificial-intelligence-tools-workplaces
  27. Frank Pasquale, The Black Box Society: The Secret Algorithms That Control Money and Information (Harvard University Press, 2015)
  28. Ifeoma Ajunwa, “The ‘Black Box’ at Work,” Big Data u0026amp; Society 7, no. 2 (July 1, 2020): 2053951720966181, https://doi.org/10.1177/2053951720938093
  29. Isabel Ebert, Isabelle Wildhaber, and Jeremias Adams-Prassl, “Big Data in the Workplace: Privacy Due Diligence as a Human Rights-Based Approach to Employee Privacy Protection,” Big Data u0026amp; Society 8, no. 1 (January 1, 2021): 20539517211013052, https://doi.org/10.1177/20539517211013051
  30. Andrea Dehlendorf and Ryan Gerety, “The Punitive Potential of AI,” in Redesigning AI, Boston Review (MIT Press, 2021), https://bostonreview.net/forum_response/the-punitive-potential-of-ai/
  31. Partnership on AI, “Framework for Promoting Workforce Well-Being in the AI-Integrated Workplace” (Partnership on AI, August 2020), https://partnershiponai.org/paper/workforce-wellbeing/
  32. Karen Hao, “Artificial Intelligence Is Creating a New Colonial World Order,” MIT Technology Review, accessed July 24, 2022, https://www.technologyreview.com/2022/04/19/1049592/artificial-intelligence-colonialism/
  33. Shakir Mohamed, Marie-Therese Png, and William Isaac, “Decolonial AI: Decolonial Theory as Sociotechnical Foresight in Artificial Intelligence,” Philosophy u0026amp; Technology 33 (December 1, 2020), https://doi.org/10.1007/s13347-020-00405-8
  34. Aarathi Krishnan et al., “Decolonial AI Manyfesto,” https://manyfesto.ai/
  35. OECD.AI (2021), powered by EC/OECD (2021). “Database of National AI Policies.” https://oecd.ai/en/dashboards
  36. Kofi Yeboah, “Artificial Intelligence in Sub-Saharan Africa: Ensuring Inclusivity.” (Paradigm Initiative, December 2021), https://paradigmhq.org/report/artificial-intelligence-in-sub-saharan-africa-ensuring-inclusivity/
  37. Adapted from Qualtrics’ employee lifecycle model, “Employee Lifecycle: The 7 Stages Every Employer Must Understand and Improve,” Qualtrics, https://www.qualtrics.com/experience-management/employee/employee-lifecycle/
  38. Mayank Kumar Golpelwar, Global Call Center Employees in India: Work and Life between Globalization and Tradition (Springer, 2015)
  39. Hye Jin Rho, Shawn Fremstad, and Hayley Brown, “A Basic Demographic Profile of Workers in Frontline Industries” (Center for Economic and Policy Research, April 2020), https://cepr.net/wp-content/uploads/2020/04/2020-04-Frontline-Workers.pdf
  40. U.S. Bureau of Labor Statistics. “All Employees, Warehousing and Storage.” FRED, Federal Reserve Bank of St. Louis. FRED, Federal Reserve Bank of St. Louis, July 2022. https://fred.stlouisfed.org/series/CES4349300001
  41. Lee Rainie et al., “AI and Human Enhancement: Americans’ Openness Is Tempered by a Range of Concerns” (Pew Research Center, March 2022), https://www.pewresearch.org/internet/wp-content/uploads/sites/9/2022/03/PS_2022.03.17_AI-HE_REPORT.pdf
  42. James Manyika et al., “Jobs Lost, Jobs Gained: What the Future of Work Will Mean for Jobs, Skills, and Wages” (McKinsey Global Institute, November 28, 2017), https://www.mckinsey.com/featured-insights/future-of-work/jobs-lost-jobs-gained-what-the-future-of-work-will-mean-for-jobs-skills-and-wages
  43. Mary L. Gray and Siddharth Suri, Ghost Work: How to Stop Silicon Valley from Building a New Global Underclass (Houghton Mifflin Harcourt, 2019)
  44. International Labour Office. “Women and Men in the Informal Economy: A Statistical Picture (Third Edition).” International Labour Office, 2018. http://www.ilo.org/wcmsp5/groups/public/u002du002d-dgreports/u002du002d-dcomm/documents/publication/wcms_626831.pdf
  45. International Labour Office. “Women and Men in the Informal Economy: A Statistical Picture (Third Edition).” International Labour Office, 2018. http://www.ilo.org/wcmsp5/groups/public/u002du002d-dgreports/u002du002d-dcomm/documents/publication/wcms_626831.pdf
  46. OECD, and International Labour Organization. “Tackling Vulnerability in the Informal Economy,” 2019. https://www.oecd-ilibrary.org/content/publication/939b7bcd-en
  47. James C. Scott, Seeing like a State: How Certain Schemes to Improve the Human Condition Have Failed, Yale Agrarian Studies (New Haven, Conn.: Yale Univ. Press, 2008)
  48. Reema Nanavaty, Expert interview with Reema Nanavaty, Director of Self Employed Women’s Association (SEWA), July 11, 2022
  49. Paul E. Spector, “Perceived Control by Employees: A Meta-Analysis of Studies Concerning Autonomy and Participation at Work,” Human Relations 39, no. 11 (November 1, 1986): 1005–16, https://doi.org/10.1177/001872678603901104
  50. Henry Ongori, “A Review of the Literature on Employee Turnover,” African Journal of Business Management 1, no. 3 (June 30, 2007): 049–054, https://academicjournals.org/article/article1380537420_Ongori.pdf
  51. See Virginia Doellgast and Sean O’Brady, “Making Call Center Jobs Better: The Relationship between Management Practices and Worker Stress,” June 1, 2020, https://ecommons.cornell.edu/handle/1813/74307 for additional detail and impacts of punitive managerial uses of monitoring technology in call centers, including increased worker stress
  52. Aiha Nguyen, “The Constant Boss: Work Under Digital Surveillance” (Data and Society, May 2021), https://datasociety.net/library/the-constant-boss/
  53. Matt Scherer, “Warning: Bossware May Be Hazardous to Your Health” (Center for Democracy u0026amp; Technology, July 2021), https://cdt.org/wp-content/uploads/2021/07/2021-07-29-Warning-Bossware-May-Be-Hazardous-To-Your-Health-Final.pdf
  54. Mary L. Gray and Siddharth Suri, Ghost Work: How to Stop Silicon Valley from Building a New Global Underclass (Houghton Mifflin Harcourt, 2019)
  55. Alexandra Mateescu and Aiha Nguyen, “Algorithmic Management in the Workplace,” Explainer (Data and Society, February 2019), https://datasociety.net/wp-content/uploads/2019/02/DS_Algorithmic_Management_Explainer.pdf
  56. Andrea Dehlendorf and Ryan Gerety, “The Punitive Potential of AI,” in Redesigning AI, Boston Review (MIT Press, 2021), https://bostonreview.net/forum_response/the-punitive-potential-of-ai/
  57. Human Impact Partners and Warehouse Worker Resource Center, “The Public Health Crisis Hidden in Amazon Warehouses,” January 2021, https://humanimpact.org/wp-content/uploads/2021/01/The-Public-Health-Crisis-Hidden-In-Amazon-Warehouses-HIP-WWRC-01-21.pdf
  58. V.B. Dubal. “Wage Slave or Entrepreneur?: Contesting the Dualism of Legal Worker Identities.” California Law Review 105, no. 1 (2017): 65–123, https://www.jstor.org/stable/24915689
  59. Ramiro Albrieu, ed., Cracking the Future of Work: Automation and Labor Platforms in the Global South, 2021, https://fowigs.net/wp-content/uploads/2021/10/Cracking-the-future-of-work.-Automation-and-labor-platforms-in-the-Global-South-FOWIGS.pdf
  60. Daniel Schneider and Kristen Harknett, “Schedule Instability and Unpredictability and Worker and Family Health and Wellbeing,” Working Paper (Washington Center for Equitable Growth, September 2016), http://cdn.equitablegrowth.org/wp-content/uploads/2016/09/12135618/091216-WP-Schedule-instability-and-unpredictability.pdf
  61. Arvind Narayanan, “How to Recognize AI Snake Oil,” https://www.cs.princeton.edu/~arvindn/talks/MIT-STS-AI-snakeoil.pdf
  62. Frederike Kaltheuner, ed., Fake AI (Meatspace Press, 2021), https://fakeaibook.com
  63. Aiha Nguyen, “The Constant Boss: Work Under Digital Surveillance” (Data and Society, May 2021), https://datasociety.net/library/the-constant-boss/
  64. Strategic Organizing Center, “Primed for Pain,” May 2021, https://thesoc.org/wp-content/uploads/2021/02/PrimedForPain.pdf
  65. Alessandro Delfanti and Bronwyn Frey, “Humanly Extended Automation or the Future of Work Seen through Amazon Patents,” Science, Technology, u0026amp; Human Values 46, no. 3 (May 1, 2021): 655–82, https://doi.org/10.1177/0162243920943665
  66. Phoebe V. Moore, “OSH and the Future of Work: Benefits and Risks of Artificial Intelligence Tools in Workplaces,” Discussion Paper (European Agency for Safety and Health at Work, 2019), https://osha.europa.eu/en/publications/osh-and-future-work-benefits-and-risks-artificial-intelligence-tools-workplaces
  67. Strategic Organizing Center, “Primed for Pain,” May 2021, https://thesoc.org/wp-content/uploads/2021/02/PrimedForPain.pdf
  68. Annette Bernhardt, Lisa Kresge, and Reem Suleiman, “Data and Algorithms at Work: The Case for Worker” (UC Berkeley Labor Center, November 2021), https://laborcenter.berkeley.edu/wp-content/uploads/2021/11/Data-and-Algorithms-at-Work.pdf
  69. Andrea Dehlendorf and Ryan Gerety, “The Punitive Potential of AI,” in Redesigning AI, Boston Review (MIT Press, 2021), https://bostonreview.net/forum_response/the-punitive-potential-of-ai/
  70. Carl Benedikt Frey and Michael A. Osborne, “The Future of Employment: How Susceptible Are Jobs to Computerisation?,” Technological Forecasting and Social Change 114 (January 1, 2017): 254–80, https://doi.org/10.1016/j.techfore.2016.08.019
  71. “These Are the Top 10 Job Skills of Tomorrow – and How Long It Takes to Learn Them,” World Economic Forum, https://www.weforum.org/agenda/2020/10/top-10-work-skills-of-tomorrow-how-long-it-takes-to-learn-them/
  72. Daniel Susskind, “Technological Unemployment,” in The Oxford Handbook of AI Governance, ed. Justin Bullock et al. (Oxford University Press), https://doi.org/10.1093/oxfordhb/9780197579329.013.42
  73. Christopher Mims, “Self-Driving Cars Could Be Decades Away, No Matter What Elon Musk Said,” WSJ, https://www.wsj.com/articles/self-driving-cars-could-be-decades-away-no-matter-what-elon-musk-said-11622865615
  74. Mary L. Gray and Siddharth Suri, Ghost Work: How to Stop Silicon Valley from Building a New Global Underclass (Houghton Mifflin Harcourt, 2019)
  75. Erik Brynjolfsson, “The Turing Trap: The Promise u0026amp; Peril of Human-Like Artificial Intelligence,” January 11, 2022, https://doi.org/10.48550/arXiv.2201.04200
  76. World Economic Forum. “Positive AI Economic Futures.” Insight Report. World Economic Forum, November 2021. https://www.weforum.org/reports/positive-ai-economic-futures/
  77. Nithya Sambasivan and Rajesh Veeraraghavan, “The Deskilling of Domain Expertise in AI Development,” in Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI ’22 (New York, NY, USA: Association for Computing Machinery, 2022), 1–14, https://doi.org/10.1145/3491102.3517578
  78. Sabrina Genz, Lutz Bellmann, and Britta Matthes, “Do German Works Councils Counter or Foster the Implementation of Digital Technologies?,” Jahrbücher Für Nationalökonomie Und Statistik 239, no. 3 (June 1, 2019): 523–64, https://doi.org/10.1515/jbnst-2017-0160
  79. Alan G. Robinson and Dean M. Schroeder, “The Role of Front-Line Ideas in Lean Performance Improvement,” Quality Management Journal 16, no. 4 (January 1, 2009): 27–40, https://doi.org/10.1080/10686967.2009.11918248
  80. Jeffrey K. Liker, The Toyota Way: 14 Management Principles From the World’s Greatest Manufacturer (McGraw Hill Professional, 2003)
  81. Taiichi Ohno, Toyota Production System: Beyond Large-Scale Production (CRC Press, 1988)
  82. Kayhan Tajeddini, Emma Martin, and Levent Altinay, “The Importance of Human-Related Factors on Service Innovation and Performance,” International Journal of Hospitality Management 85 (February 1, 2020): 102431, https://doi.org/10.1016/j.ijhm.2019.102431
  83. Katherine C. Kellogg, Mark Sendak, and Suresh Balu, “AI on the Front Lines,” MIT Sloan Management Review, May 4, 2022, https://sloanreview.mit.edu/article/ai-on-the-front-lines/
  84. Zeynep Ton, “The Good Jobs Solution,” Harvard Business Review, 2017, 32. https://goodjobsinstitute.org/wp-content/uploads/2018/03/Good-Jobs-Solution-Full-Report.pdf
  85. Abigail Gilbert et al., “Case for Importance: Understanding the Impacts of Technology Adoption on ‘Good Work’” (Institute for the Future of Work, May 2022), https://uploads-ssl.webflow.com/5f57d40eb1c2ef22d8a8ca7e/62a72d3439edd66ed6f79654_IFOW_Case%20for%20Importance.pdf
  86. Daniel Zhang et al., “The AI Index 2022 Annual Report” (AI Index Steering Committee, Stanford Institute for Human-Centered AI, Stanford University, March 2022), https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-AI-Index-Report_Master.pdf
  87. Julian Posada, “The Future of Work Is Here: Toward a Comprehensive Approach to Artificial Intelligence and Labour,” Ethics of AI in Context, 2020, http://arxiv.org/abs/2007.05843
  88. Jeffrey Brown, “The Role of Attrition in AI’s ‘Diversity Problem’” (Partnership on AI, April 2021), https://partnershiponai.org//wp-content/uploads/dlm_uploads/2022/04/PAI_researchpaper_aftertheoffer.pdf
  89. Tina M Park, “Making AI Inclusive: 4 Guiding Principles for Ethical Engagement” (Partnership on AI, July 2022), https://partnershiponai.org//wp-content/uploads/dlm_uploads/2022/07/PAI_whitepaper_making-ai-inclusive.pdf
  90. Fabio Urbina et al., “Dual Use of Artificial-Intelligence-Powered Drug Discovery,” Nature Machine Intelligence 4, no. 3 (March 2022): 189–91, https://doi.org/10.1038/s42256-022-00465-9
  91. Aarathi Krishnan et al., “Decolonial AI Manyfesto,” accessed July 24, 2022, https://manyfesto.ai/
  92. Lama Nachman, “Beyond the Automation-Only Approach,” in Redesigning AI, Boston Review (MIT Press, 2021), https://bostonreview.net/forum_response/beyond-the-automation-only-approach/
  93. Christina Colclough, “Righting the Wrong: Putting Workers’ Data Rights Firmly on the Table,” in Digital Work in the Planetary Market, –International Development Research Centre Series (MIT Press, 2022), https://idl-bnc-idrc.dspacedirect.org/bitstream/handle/10625/61034/IDL-61034.pdf
  94. Christina Colclough, “When Algorithms Hire and Fire,” International Union Rights 25, no. 3 (2018): 6–7. https://muse.jhu.edu/article/838277/summary
  95. Brishen Rogers, “The Law and Political Economy of Workplace Technological Change,” Harvard Civil Rights-Civil Liberties Law Review 55 (2020): 531
  96. Wilneida Negrón, “Little Tech Is Coming for Workers” (Coworker.org, 2021), https://home.coworker.org/wp-content/uploads/2021/11/Little-Tech-Is-Coming-for-Workers.pdf
  97. Jeremias Adams-Prassl, “What If Your Boss Was an Algorithm? Economic Incentives, Legal Challenges, and the Rise of Artificial Intelligence at Work,” Comparative Labor Law u0026amp; Policy Journal 41 (2021 2019): 123
  98. Daniel Zhang et al., “The AI Index 2022 Annual Report” (AI Index Steering Committee, Stanford Institute for Human-Centered AI, Stanford University, March 2022), https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-AI-Index-Report_Master.pdf
  99. Kofi Yeboah, “Artificial Intelligence in Sub-Saharan Africa: Ensuring Inclusivity.” (Paradigm Initiative, December 2021), https://paradigmhq.org/report/artificial-intelligence-in-sub-saharan-africa-ensuring-inclusivity/
  100. Fekitamoeloa ‘Utoikamanu, “Closing the Technology Gap in Least Developed Countries,” United Nations (United Nations), accessed July 25, 2022, https://www.un.org/en/chronicle/article/closing-technology-gap-least-developed-countries
  101. Annette Bernhardt, Lisa Kresge, and Reem Suleiman, “Data and Algorithms at Work: The Case for Worker” (UC Berkeley Labor Center, November 2021), https://laborcenter.berkeley.edu/wp-content/uploads/2021/11/Data-and-Algorithms-at-Work.pdf
  102. Allison Levitsky, “California Might Require Employers to Disclose Workplace Surveillance,” Protocol, April 21, 2022, https://www.protocol.com/bulletins/ab-1651-california-workplace-surveillance
  103. “The EU Artificial Intelligence Act,” The AI Act, September 7, 2021, https://artificialintelligenceact.eu/
  104. Daron Acemoglu, Andrea Manera, and Pascual Restrepo, “Does the US Tax Code Favor Automation?,” Working Paper, Working Paper Series (National Bureau of Economic Research, April 2020), https://doi.org/10.3386/w27052
  105. Emmanuel Moss et al., “Assembling Accountability: Algorithmic Impact Assessment for the Public Interest” (Data and Society, June 2021), https://datasociety.net/wp-content/uploads/2021/06/Assembling-Accountability.pdf
  106. Kofi Yeboah, “Artificial Intelligence in Sub-Saharan Africa: Ensuring Inclusivity.” (Paradigm Initiative, December 2021), https://paradigmhq.org/report/artificial-intelligence-in-sub-saharan-africa-ensuring-inclusivity/
  107. Daniel Zhang et al., “The AI Index 2022 Annual Report” (AI Index Steering Committee, Stanford Institute for Human-Centered AI, Stanford University, March 2022), https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-AI-Index-Report_Master.pdf
  108. Business Roundtable, “Statement on the Purpose of a Corporation,” July 2021, https://s3.amazonaws.com/brt.org/BRT-StatementonthePurposeofaCorporationJuly2021.pdf
  109. Larry Fink, “Larry Fink’s Annual 2022 Letter to CEOs,” accessed May 27, 2022, https://www.blackrock.com/corporate/investor-relations/larry-fink-ceo-letter
  110. Katanga Johnson, “U.S. SEC Chair Provides More Detail on New Disclosure Rules, Treasury Market Reform | Reuters,” https://www.reuters.com/business/sustainable-business/sec-considers-disclosure-mandate-range-climate-metrics-2021-06-23/
  111. “Your Guide to Amazon’s 2022 Shareholder Event,” United for Respect, accessed May 27, 2022, https://united4respect.org/amazon-shareholders/
Table of Contents
1
2
3
4
5
6
7
8
9
10

Making AI Inclusive: 4 Guiding Principles for Ethical Engagement

Tina Park

Introduction

While the concept of “human-centered design” is hardly new to the technology sector, recent years have seen growing efforts to build inclusive artificial intelligence (AI) and machine learning (ML) products. Broadly, inclusive AI/ML refers to algorithmic systems which are created with the active engagement of and input from people who are not on AI/ML development teams. This includes both end users of the systems and non-users who are impacted by the systems.“Impacted non-user” refers to people who are impacted by the deployment of an AI/ML system, but are not the direct user or customer of that system. For example, in the case of students in the United Kingdom in 2020 whose A-level grades were determined by an algorithm, the “user” of the algorithmic system is Ofqual, the official exam regulator in England, and the students are “impacted non-users.” To collect this input, practitioners are increasingly turning to engagement practices like user experience (UX) research and participatory design.

Amid rising awareness of structural inequalities in our society, embracing inclusive research and design principles helps signal a commitment to equitable practices. As many proponents have pointed out, it also makes for good business: Understanding the needs of a more diverse set of people expands the market for a given product or service. Once engaged, these people can then further improve an AI/ML product, identifying issues like bias in algorithmic systems.

Despite these benefits, however, there remain significant challenges to greater adoption of inclusive development in the AI/ML field. There are also important opportunities. For AI practitioners, AI ethics researchers, and others interested in learning more about responsible AI, this Partnership on AI (PAI) white paper provides guidance to help better understand and overcome the challenges related to engaging stakeholders in AI/ML development.

Ambiguities around the meaning and goals of “inclusion” present one of the central challenges to AI/ML inclusion efforts. To make the changes needed for a more inclusive AI that centers equity, the field must first find agreement on foundational premises regarding inclusion. Recognizing this, this white paper provides four guiding principles for ethical engagement grounded in best practices:

  1. All participation is a form of labor that should be recognized
  2. Stakeholder engagement must address inherent power asymmetries
  3. Inclusion and participation can be integrated across all stages of the development lifecycle
  4. Inclusion and participation must be integrated to the application of other responsible AI principles

To realize ethical participatory engagement in practice, this white paper also offers three recommendations aligned with these principles for building inclusive AI:

  1. Allocate time and resources to promote inclusive development
  2. Adopt inclusive strategies before development begins
  3. Train towards an integrated understanding of ethics

This white paper’s insights are derived from the research study “Towards An Inclusive AI: Challenges and Opportunities for Public Engagement in AI Development.” That study drew upon discussions with industry experts, a multidisciplinary review of existing research on stakeholder and public engagement, and nearly 70 interviews with AI practitioners and researchers, as well as data scientists, UX researchers, and technologists working on AI and ML projects, over a third of whom were based in areas outside of the US, EU, UK, or Canada. Supplemental interviews with social equity and Diversity, Equity, and Inclusion (DEI) advocates contributed to the development of recommendations for individual practitioners, business team leaders, and the field of AI and ML more broadly.

This white paper does not provide a step-by-step guide for implementing specific participatory practices. It is intended to renew discussions on how to integrate a wider range of insights and experiences into AI/ML technologies, including those of both users and the people impacted (either directly or indirectly) by these technologies. Such conversations — between individuals, inside teams, and within organizations — must be had to spur the changes needed to develop truly inclusive AI.

Making AI Inclusive: 4 Guiding Principles for Ethical Engagement

Introduction

Guiding Principles for Ethical Participatory Engagement

Principle 1: All Participation Is a Form of Labor That Should Be Recognized

Principle 2: Stakeholder Engagement Must Address Inherent Power Asymmetries

Principle 3: Inclusion and Participation Can Be Integrated Across All Stages of the Development Lifecycle

Principle 4: Inclusion and Participation Must Be Integrated to the Application of Other Responsible AI Principles

Recommendations for Ethical Engagement in Practice

Recommendation 1: Allocate Time and Resources to Promote Inclusive Development

Recommendation 2: Adopt Inclusive Development Strategies Before Development Begins

Recommendation 3: Train Towards an Integrated Understanding of Ethics

Conclusion

Acknowledgements

Sources Cited

  1. Jean-Baptiste, A. (2020). Building for Everyone: Expand Your Market with Design Practices from Google’s Product Inclusion Team. John Wiley and Sons, Inc.
  2. Romao, M. (2019, June 27). “A vision for AI: Innovative, Trusted and Inclusive.” Policy@Intel. https://community.intel.com/t5/Blogs/Intel/Policy-Intel/A-vision-for-AI-Innovative-Trusted-and-Inclusive/post/1333103
  3. Zhou, A., Madras, D., Raji, D., Milli, S., Kulynych, B. and Zemel, R. (2020, July 17). “Participatory Approaches to Machine Learning.” (Workshop). International Conference on Machine Learning 2020.
  4. Lewis, J. E., Abdilla, A., Arista, N., Baker, K., Benesiinaabandan, S., Brown, M., ... and Whaanga, H. (2020). Indigenous protocol and artificial intelligence position paper. Indigenous AI. https://www.indigenous-ai.net/position-paper
  5. Costanza-Chock, S. (2020). Design justice: Community-led practices to build the worlds we need. The MIT Press.
  6. Hamraie, A., and Fritsch, K. (2019). “Crip technoscience manifesto.” Catalyst: Feminism, Theory, Technoscience, 5(1), 1-33. https://catalystjournal.org/index.php/catalyst/article/view/29607
  7. Taylor, L. (2017). “What is data justice? The case for connecting digital rights and freedoms globally.” Big Data and Society, 4(2), 2053951717736335. https://doi.org/10.1177/2053951717736335
  8. Benjamin, Ruha. (2019). Race After Technology: Abolitionist Tools for the New Jim Code. Polity. https://www.ruhabenjamin.com/race-after-technology
  9. Hanna, A., Denton, E., Smart, A., and Smith-Loud, J. (2020). “Towards a critical race methodology in algorithmic fairness.” In Proceedings of the 2020 conference on fairness, accountability, and transparency (pp. 501-512). https://arxiv.org/abs/1912.03593
  10. Sloane, M., Moss, E., Awomolo, O. and Forlano, L. (2020). ''Participation is not a design fix for machine learning.'' arXiv. https://arxiv.org/abs/2007.02423
  11. Cifor, M., Garcia, P., Cowan, T.L., Rault, J., Sutherland, T., Chan, A., Rode, J., Hoffmann, A.L., Salehi, N. and Nakamura, L. (2019). “Feminist Data Manifest-No.” Feminist Data Manifest-No. Retrieved October 1, 2020 from https://www.manifestno.com/home
  12. Harrington, C., Erete, S. and Piper, A.M. (2019). “Deconstructing Community-Based Collaborative Design: Towards More Equitable Participatory Design Engagements.” In Proceedings of the ACM on Human-Computer Interaction 3(CSCW):1–25. https://doi.org/10.1145/3359318
  13. Freimuth V.S., Quinn, S.C., Thomas, S.B., Cole, G., Zook, E and Duncan, T. (2001). “African Americans’ Views on Research and the Tuskegee Syphilis Study.” Social Science and Medicine 52(5):797–808. https://doi.org/10.1016/S0277-9536(00)00178-7
  14. George, S., Duran, N. and Norris, K. (2014). “A Systematic Review of Barriers and Facilitators to Minority Research Participation Among African Americans, Latinos, Asian Americans, and Pacific Islanders.” American Journal of Public Health 104(2):e16–31. https://doi.org/10.2105/AJPH.2013.301706
  15. Barabas, C., Doyle, C., Rubinovitz, J.B., and Dinakar, K. (2020). “Studying Up: Reorienting the Study of Algorithmic Fairness around Issues of Power.” In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (pp. 167-176).
  16. Harrington, C., Erete, S. and Piper, A.M.. (2019). “Deconstructing Community-Based Collaborative Design: Towards More Equitable Participatory Design Engagements.” In Proceedings of the ACM on Human-Computer Interaction 3(CSCW):1–25. https://dl.acm.org/doi/10.1145/3359318.
  17. Chan, A., Okolo, C. T., Terner, Z., and Wang, A. (2021). “The Limits of Global Inclusion in AI Development.” arXiv. https://arxiv.org/abs/2102.01265
  18. Sanders, E. B. N. (2002). “From user-centered to participatory design approaches.” In Design and the social sciences (pp. 18-25). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9780203301302-8/user-centered-participatory-design-approaches-elizabeth-sanders
  19. Leslie, D., Katell, M., Aitken, M., Singh, J., Briggs, M., Powell, R., ... and Burr, C. (2022). “Data Justice in Practice: A Guide for Developers.” arXiv. https://arxiv.org/ftp/arxiv/papers/2205/2205.01037.pdf
  20. Zdanowska, S., and Taylor, A. S. (2022). “A study of UX practitioners roles in designing real-world, enterprise ML systems.” In CHI Conference on Human Factors in Computing Systems (pp. 1-15). https://dl.acm.org/doi/abs/10.1145/3491102.3517607
  21. Leslie, D., Katell, M., Aitken, M., Singh, J., Briggs, M., Powell, R., ... and Burr, C. (2022). “Data Justice in Practice: A Guide for Developers.” arXiv. https://arxiv.org/ftp/arxiv/papers/2205/2205.01037.pdf
  22. Saulnier, L., Karamcheti, S., Laurençon, H., Tronchon, L., Wang, T., Sanh, V., Singh, A., Pistilli, G., Luccioni, S., Jernite, Y., Mitchell, M. and Kiela, D. (2022). “Putting Ethical Principles at the Core of the Research Lifecycle.” Hugging Face Blog. Retrieved from https://huggingface.co/blog/ethical-charter-multimodal
  23. Ada Lovelace Institute. (2021). “Participatory data stewardship: A framework for involving people in the use of data.” Ada Lovelace Institute. https://www.adalovelaceinstitute.org/report/participatory-data-stewardship/
  24. Delgado, F., Yang, S., Madaio, M., and Yang, Q. (2021). “Stakeholder Participation in AI: Beyond ‘Add Diverse Stakeholders and Stir.’” arXiv. https://arxiv.org/pdf/2111.01122.pdf
  25. Sloane, M., Moss, E., Awomolo, O. and Forlano, L. (2020). ''Participation is not a design fix for machine learning.'' arXiv. https://arxiv.org/abs/2007.02423
Table of Contents
1
2
3
4
5
6

After the Offer: The Role of Attrition in AI’s ‘Diversity Problem’

Jeffrey Brown

Executive Summary

As a field, AI struggles to retain team members from diverse backgrounds. Given the far-reaching effects of algorithmic systems and the documented harms to marginalized communities, the fact that these communities are not represented on AI teams is particularly troubling. Why is this such a widespread phenomenon and what can be done to close the gap? This research paper, “After the Offer: The Role of Attrition in AI’s ‘Diversity Problem’” seeks to answer these questions, providing four recommendations for how organizations can make the AI field more inclusive. Click the button below to download a summary of these recommendations or continue on to read the paper in full.

Summary of Recommendations

Amid heightened attention to society-wide racial and social injustice, organizations in the AI space have been urged to investigate the harmful effects that AI has had on marginalized populations. It’s an issue that engineers, researchers, project managers, and various leaders in both tech companies and civil society organizations have devoted significant time and resources to in recent years. In examining the effects of AI, organizations must consider who exactly has been designing these technologies.

Diversity reports have revealed that the people working at the organizations that develop and deploy AI lack diversity across several dimensions. While organizations have blamed pipeline problems in the past, research has increasingly shown that once workers belonging to minoritized identities get hired in these spaces, systemic difficulties affect their experiences in ways that their peers from dominant groups do not have to worry about.

Attrition in the tech industry is a problem that disproportionately affects minoritized workers. In AI, where technologies already have a disproportionately negative impact on these communities, this is especially troublesome.

Minoritized Workers

This report uses minoritized workers as an umbrella term to refer to people whose identities (in categories such as race, ethnicity, gender, or ability) have been historically marginalized by those in dominant social groups. The minoritized workers in this study include people who identified as minoritized within the identity categories of race and ethnicity, gender identity, sexual orientation, ability, and immigration status. Because this study was international in scope, it is important to note that these categories are relative to their social context.

We are left wondering: What leads to these folks leaving their teams, organizations, or even the AI field more broadly? What about the AI field in particular influences these people to stay or leave? And what can organizations do to stem this attrition to make their environments more inclusive?

The current study uses interviews with folks belonging to minoritized identities across the AI field, managers, and DEI (diversity, equity, and inclusion)- leaders in tech to get rich information about what aspects of cultures within an organization promote inclusion or contribute to attrition. Themes that emerged during these interviews formed 3 key takeaways:

  1. Diversity makes for better team climates
  2. Systemic supports are difficult but necessary to undo the current harms to minoritized workers
  3. Individual efforts to change organizational culture fall disproportionately on minoritized folks who are usually not professionally rewarded for their efforts

In line with these takeaways, the study makes 4 recommendations about what can be done to make the AI field more inclusive for workers:

  1. Organizations must systemically support ERGs
  2. Organizations must intentionally diversify leadership and managers
  3. DEI trainings must be specific in order to be effective and be more connected to the content of AI work
  4. Organizations must interrogate their values as practiced and fundamentally alter them to include the perspectives of people who are not White, cis, or male

These takeaways and recommendations are explored in more depth below.

Key Takeaways

Key Takeaways

1. Diversity makes for better team climates

Across interviews, participants consistently expressed that managers who belonged to minoritized identities or who took the time to learn about working with diverse identities were more supportive of their needs and career goals. Such efforts reportedly resulted in teams that were also more diverse, inclusive, interdisciplinary, and engendering of a positive team culture/climate. In these environments, workers belonging to minoritized identities thrived. A diversity in backgrounds and perspectives was particularly important for AI teams that needed to solve interdisciplinary problems.

Conversely, the negative impact of work environments that were sexist or where participants experienced acts of prejudice such as microaggressions was also a recurring theme.

While collaborative or positive work environments were also a common theme, such environments did not in themselves negate predominant cultures which deprioritized “DEI-focused” work, work that was highly interdisciplinary, or work that did not serve the dominant group. Negative organizational cultures seemed to exacerbate experiences of prejudice or discrimination on AI teams.

2. Systemic supports are difficult but necessary to undo the current harms to minoritized workers

Participants belonging to minoritized identities said that they either left or intended to leave organizations that did not support their continued career growth or possessed values that did not align with their own. Consistent with this, participants described examples of their organizations not valuing the content of their work.

Participants also tied their desires to leave with instances of prejudice or discrimination, which may also be related to “toxic” work environments. Some participants reported instances of being tokenized or being subject to negative stereotypes about their identity groups, somewhat reflective of wider contexts in tech beyond AI.

Systemic supports include incentive structures that allow minoritized workers to succeed at every level, from the teams that they work with actively validating their experiences to their managers finding the best ways for them to deliver work products in accordance with both individual and institutional needs. Guidelines for promotion that recognize the barriers these workers face in environments mostly occupied by dominant group norms are another important support.

3. Individual efforts to change organizational culture fall disproportionately on minoritized folks who are usually not professionally rewarded for their efforts

Individuals discussed ways in which they tried to make their workplaces or teams more inclusive or otherwise sought to incorporate diverse perspectives into their work around AI. Participants sometimes had to contend with bias against DEI efforts, reporting that other workers in their organizations would dismiss their efforts as lacking rigor or focus on the product.

There were some institutional efforts to foster a more inclusive culture, most commonly DEI trainings. DEI trainings that were very specific to some groups (e.g., gender diverse folks, Black people) were reported as being the most effective. However, even when they were specific, DEI trainings seemed to be disconnected from some aspects of the workplace climate or the content of what teams were working on.

Participants who mentioned Employee Resource Groups (ERGs) uniformly praised them, discussing the huge positive impact they had on a personal level, forming the bases of their social support networks in their organizations and having a strong impact on their ability to integrate aspects of their identities or other “DEI topics” they were passionate about into their work.

Recommendations

Recommendations

1. Organizations must systemically support ERGs

Employees specifically named ERGs as one of their main sources of support even in work environments that were otherwise toxic.. Additionally, ERGs provided built-in mentorship for those who did not have ready access to mentors or whose supervisors had not done the work to understand the kinds of support needed for those of minoritized identities to thrive in predominantly White and male environments.

What makes this recommendation work?

Within these ERGs, there existed other grass-roots initiatives that supported workers, such as informal talking circles and networks of employees that essentially provided peer mentoring that participants found crucial to navigating White- and male-dominated spaces. The mentorship provided by ERGs was also essential when HR failed to provide systemic support for staff and instead prioritized protecting the organization.

What must be in place?

While participants uniformly praised ERGs, they required large amounts of time from staff members that detracted from their work. Such groups also ran the risk of getting taken over by leadership and having their original mission derailed. Institutions should seek a balance between supporting these groups and giving them the freedom to organize in pursuit of their own best interests.

What won’t this solve?

ERGs will not necessarily make an organization’s AI or tech more inclusive. Rather, systematically supporting ERGs will provide more support and community for minoritized workers, which is meant to promote a more inclusive workplace in general.

2. Organizations must intentionally diversify leadership and managers
What makes this recommendation work?

Participants repeatedly pointed to managers and upper-level leaders who belonged to minoritized identities (especially racial ones) as important influences, changing policy that permeated through various levels of their organizations. A diverse workforce may also bring with it multiple perspectives, including those belonging to people from different disciplines who may be interested in working in the AI field due to the opportunity for interdisciplinary collaboration, research, and product development. Bringing in folks from various academic, professional, and technical backgrounds to solve problems is especially crucial for AI teams.

What must be in place?

There must be understanding about the reasons behind the lack of diversity and the “bigger picture” of how powerful groups more easily perpetuate power structures already in place. Participants spoke of managers who did not belong to minoritized identities themselves but who took the time to learn in depth about differences in power and privilege in the tech ecosystem, appreciating the diverse perspectives that workers brought. These managers, while not perfect, tended to take advocating for their reports very seriously, particularly female reports who often went overlooked.

What won’t this solve?

Intentionally diversifying leadership and managers will not automatically create a pipeline for diversity at the leadership level, nor will it automatically override institutional culture or policies that ignore DEI best practices.

3. DEI trainings must be specific in order to be effective and be more connected to the content of AI work
What makes this recommendation work?

Almost all participants reported that their organizations mandated some form of DEI training for all staff. These ranged widely, from very general ones to very specific trainings that discussed cultural competency about more specific groups of people (e.g., participants reported that there were trainings on anti-Black racism). Participants discussed that the more specific trainings tended to be more impactful.

What must be in place?

Organizations must invest in employees who see the importance of inclusive values in AI research and product design. Participants pointed to the importance of managers who had an ability to foster inclusive team values, which was not something that HR could mandate.

What won’t this solve?

As several participants observed, DEI trainings will not uproot or counteract institutional stigmas against DEI. It would take sustained effort and deliberate alignment of values for an organization to emphasize DEI in its work.

4. Organizations must interrogate their values as practiced and fundamentally alter them to include the perspectives of people who are not White, cis, or male
What makes this recommendation work?

Participants frequently reported that a misalignment of values was a primary reason for them leaving their organizations or wanting to leave their organizations. Participants in this sample discussed joining the AI field to create a positive impact while growing professionally. This led them to feeling disappointed when their organizations did not prioritize these goals (despite them being among their stated values).

What must be in place?

Participants found it frustrating when organizations stated that they valued diversity and then failed to live up to this value with hiring, promotion, and day-to-day operations, ignoring the voices of minoritized individuals. If diversity is truly a value, organizations may have to investigate their systems of norms and expectations that are fundamentally male, Eurocentric, and do not make space for those from diverse backgrounds. They then must take additional steps to consider how such systems influence their work in AI.

What won’t this solve?

Because achieving a fundamental re-alignment like this is a more comprehensive solution, it cannot satisfy the most immediate and urgent needs for reform. Short-term, organizations must work with DEI professionals to recognize how they are perpetuating potentially harmful norms of the dominant group and work to create policies that are more equitable. Longer term fixes may not, for instance, satisfy the immediate and urgent need for more diversity in leadership and teams in general.

After the Offer: The Role of Attrition in AI’s ‘Diversity Problem’

Executive Summary

Key Takeaways

Recommendations

Introduction

Why Study Attrition of Minoritized Workers in AI?

Background

Problems Due to Lack of Diversity of AI Teams

More Diverse Teams Yield Better Outcomes

Current Level of Diversity in Tech

Diversity in AI

What Has Been Done

What Has Been Done

What Has Been Done

Attrition in Tech

Current Study and Methodology

Recruitment

Participants

Measure

Procedure

Analysis

Results

Attrition

Culture

Efforts to Improve Inclusivity

Summary and the Path Forward

Acknowledgements

Appendices

Appendix 1: Recruitment Document

Appendix 2: Privacy Document

Appendix 3: Research Protocol

Appendix 4: Important Terms

Sources Cited

  1. Buolamwini, J., u0026amp; Gebru, T. (2018, January). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on fairness, accountability and transparency (pp. 77-91). PMLR.
  2. Zhao, D., Wang, A., u0026amp; Russakovsky, O. (2021). Understanding and Evaluating Racial Biases in Image Captioning. arXiv preprint arXiv:2106.08503.
  3. Feldstein, S. (2021). The Global Expansion of AI Surveillance. Carnegie Endowment for International Peace. Retrieved 17 September 2019, from https://carnegieendowment.org/2019/09/17/global-expansion-of-ai-surveillance-pub-79847.
  4. Firth, N. (2021). Apple Card is being investigated over claims it gives women lower credit limits. MIT Technology Review. Retrieved 23 November 2021, from https://www.technologyreview.com/2019/11/11/131983/apple-card-is-being-investigated-over-claims-it-gives-women-lower-credit-limits/.
  5. Howard, A., u0026amp; Isbell, C. (2021). Diversity in AI: The Invisible Men and Women. MIT Sloan Management Review. Retrieved 21 September 2020, from https://sloanreview.mit.edu/article/diversity-in-ai-the-invisible-men-and-women/.
  6. AI Now. (2019). Discriminating Systems: Gender, Race, and Power in AI (Ebook). Retrieved 23 November 2021.
  7. Swauger, S. (2021). Opinion | What's worse than remote school? Remote test-taking with AI proctors. NBC News. Retrieved 7 November 2020, from https://www.nbcnews.com/think/opinion/remote-testing-monitored-ai-failing-students-forced-undergo-it-ncna1246769
  8. Belani, G. (2021). AI Paving the Way for Remote Work | IEEE Computer Society. Computer.org. Retrieved 26 July 2021, from https://www.computer.org/publications/tech-news/trends/remote-working-easier-with-ai
  9. Scott, A., Kapor Klein, F., and Onovakpuri, U. (2017). Tech Leavers Study (Ebook). Retrieved 24 November 2021, from https://www.kaporcenter.org/wp-content/uploads/2017/08/TechLeavers2017.pdf
  10. Women in the Workplace (2021). 2021. Retrieved 23 November 2021, from https://www.mckinsey.com/featured-insights/diversity-and-inclusion/women-in-the-workplace
  11. Silicon Valley Bank. (2021). 2020 Global Startup Outlook: Key insights from the Silicon Valley Bank startup outlook survey (Ebook). Retrieved 23 November 2021, from https://www.svb.com/globalassets/library/uploadedfiles/content/trends_and_insights/reports/startup_outlook_report/suo_global_report_2020-final.pdf
  12. Firth, N. (2021). Apple Card is being investigated over claims it gives women lower credit limits. MIT Technology Review. Retrieved 23 November 2021, from https://www.technologyreview.com/2019/11/11/131983/apple-card-is-being-investigated-over-claims-it-gives-women-lower-credit-limits/.
  13. Tomasev, N., McKee, K.R., Kay, J., u0026amp; Mohamed, S. (2021). Fairness for Unobserved Characteristics: Insights from technological impacts on queer communities. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (AIES ’21), Retrieved October 1, 2021 from https://doi.org/10.1145/3461702.3462540
  14. Martinez, E., u0026amp; Kirchner, L. (2021). The secret bias hidden in mortgage-approval algorithms | AP News. AP News. Retrieved 24 November 2021, from https://apnews.com/article/lifestyle-technology-business-race-and-ethnicity-mortgages-2d3d40d5751f933a88c1e17063657586
  15. Turner Lee, N., Resnick, P., u0026amp; Barton, G. (2021). Algorithmic bias detection and mitigation: Best practices and policies to reduce consumer harms. Brookings. Retrieved 24 November 2021, from https://www.brookings.edu/research/algorithmic-bias-detection-and-mitigation-best-practices-and-policies-to-reduce-consumer-harms/.
  16. Rock, D., u0026amp; Grant, H. (2016). Why diverse teams are smarter. Harvard Business Review, 4(4), 2-5.
  17. Wang, J., Cheng, G. H. L., Chen, T., u0026amp; Leung, K. (2019). Team creativity/innovation in culturally diverse teams: A meta‐analysis. Journal of Organizational Behavior, 40(6), 693-708.
  18. Lorenzo, R., Voigt, N., Tsusaka, M., Krentz, M., u0026amp; Abouzahr, K. (2018). How Diverse Leadership Teams Boost Innovation. BCG Global. Retrieved 24 November 2021, from https://www.bcg.com/publications/2018/how-diverse-leadership-teams-boost-innovation
  19. Hoobler, J. M., Masterson, C. R., Nkomo, S. M., u0026amp; Michel, E. J. (2018). The business case for women leaders: Meta-analysis, research critique, and path forward. Journal of Management, 44(6), 2473-2499.
  20. Chakravorti, B. (2020). To Increase Diversity, U.S. Tech Companies Need to Follow the Talent. Harvard Business Review. Retrieved 24 November 2021, from https://hbr.org/2020/12/to-increase-diversity-u-s-tech-companies-need-to-follow-the-talent.
  21. Accenture. (2018). Getting to Equal 2018: The Disability Inclusion Advantage. Retrieved from https://www.accenture.com/_acnmedia/pdf-89/accenture-disability-inclusion-research-report.pdf
  22. Whittaker, M., Alper, M., Bennett, C. L., Hendren, S., Kaziunas, L., Mills, M., ... u0026amp; West, S. M. (2019). Disability, bias, and AI. AI Now Institute.
  23. Heater, B. (2020). Tech companies respond to George Floyd’s death, ensuing protests and systemic racism. Techcrunch.com. Retrieved 24 November 2021, from https://techcrunch.com/2020/06/01/tech-co-protests/.
  24. Google (2021). 2021 Diversity Annual Report. Retrieved 24 November 2021, from https://static.googleusercontent.com/media/diversity.google/en//annual-report/static/pdfs/google_2021_diversity_annual_report.pdf?cachebust=2e13d07.
  25. Facebook. (2021). Facebook Diversity Update: Increasing Representation in Our Workforce and Supporting Minority-Owned Businesses | Meta. Meta. Retrieved 24 November 2021, from https://about.fb.com/news/2021/07/facebook-diversity-report-2021/.
  26. Amazon Staff. (2020). Our workforce data. US About Amazon. Retrieved 24 November 2021, from https://www.aboutamazon.com/news/workplace/our-workforce-data
  27. Adobe. (2021). Adobe Diversity By the Numbers. Adobe. Retrieved 24 November 2021, from https://www.adobe.com/diversity/data.html
  28. National Center for Women in Tech. (2020). NCWIT Scorecard: The Status of Women in Computing (2020 Update). Retrieved https://ncwit.org/resource/scorecard/
  29. Center for American Progress (2012). The State of diversity in Today’s workforce. Retrieved from https://www.americanprogress.org/article/the-state-of-diversity-in-todays-workforce/
  30. Gillenwater, S. (2020). Meet the CIOs of the Fortune 500 — 2021 edition. Boardroom Insiders. Retrieved from https://www.boardroominsiders.com/blog/meet-the-cios-of-the-fortune-500-2021-edition
  31. Stack Overflow. (2020). 2020 Developer Survey. Retrieved from https://insights.stackoverflow.com/survey/2020#developer-profile-disability-status-mental-health-and-differences
  32. Stanford HAI. (2021). The AI Index Report: Measuring Trends in Artificial intelligence (Ebook). Retrieved 24 November 2021, from https://aiindex.stanford.edu/wp-content/uploads/2021/03/2021-AI-Index-Report-_Chapter-6.pdf.
  33. Chi, N., Lurie, E., u0026amp; Mulligan, D. K. (2021). Reconfiguring Diversity and Inclusion for AI Ethics. arXiv preprint arXiv:2105.02407.
  34. Selyukh, A. (2016). Why Some Diversity Thinkers Aren't Buying The Tech Industry's Excuses. NPR. Retrieved 24 November 2021, from https://www.npr.org/sections/alltechconsidered/2016/07/19/486511816/why-some-diversity-thinkers-arent-buying-the-tech-industrys-excuses.
  35. National Association for Educational Progress. (2020). NAEP Report Card: Mathematics. Retrieved from https://www.nationsreportcard.gov/mathematics/nation/achievement/?grade=4
  36. Ladner, R. (2021). Expanding the pipeline: The status of persons with disabilities in the Computer Science Pipeline. Retrieved February 1, 2022, from https://cra.org/cra-wp/expanding-the-pipeline-the-status-of-persons-with-disabilities-in-the-computer-science-pipeline/
  37. Center for Evaluating the Research Pipeline (2021). “Data Buddies Survey 2019 Annual Report”. Computing Research Association, Washington, D.C.
  38. Code.org. (2021). Code.org's Approach to Diversity u0026amp; Equity in Computer Science. Code.org. Retrieved 24 November 2021, from https://code.org/diversity
  39. Zweben, S., u0026amp; Bizot, B. (2021). 2020 Taulbee Survey: Bachelor’s and Doctoral Degree Production Growth Continues but New Student Enrollment Shows Declines (Ebook). Computing Research Association. Retrieved 24 November 2021, from https://cra.org/wp-content/uploads/2021/05/2020-CRA-Taulbee-Survey.pdf
  40. Computing Research Association (2017). Generation CS: Computer Science Undergraduate Enrollments Surge Since 2006
  41. The Higher Education Statistics Agency (2021). Higher Education Student Statistics. Retrieved from https://www.hesa.ac.uk/news/16-01-2020/sb255-higher-education-student-statistics/subjects
  42. BCS. (2014). Women in IT Survey (Ebook). BCS: The Chartered Institute for IT. Retrieved 24 November 2021, from https://www.bcs.org/media/4446/women-it-survey.pdf
  43. Inclusive Boards. (2018). Inclusive Tech Alliance Report 2018 (Ebook). Retrieved 24 November 2021, from https://www.inclusivetechalliance.co.uk/wp-content/uploads/2019/07/Inclusive-Tech-Alliance-Report.pdf.
  44. Atomico. (2020). The State of European Tech 2020. 2020.stateofeuropeantech.com. Retrieved 24 November 2021, from https://2020.stateofeuropeantech.com/chapter/diversity-inclusion/article/diversity-inclusion/.
  45. Chung-Yan, G. A. (2010). The nonlinear effects of job complexity and autonomy on job satisfaction, turnover, and psychological well-being. Journal of occupational health psychology, 15(3), 237.
  46. McKnight, D. H., Phillips, B., u0026amp; Hardgrave, B. C. (2009). Which reduces IT turnover intention the most: Workplace characteristics or job characteristics?. Information u0026amp; Management, 46(3), 167-174.
  47. Vaamonde, J. D., Omar, A., u0026amp; Salessi, S. (2018). From organizational justice perceptions to turnover intentions: The mediating effects of burnout and job satisfaction. Europe's journal of psychology, 14(3), 554.
  48. Instructure (2019). How to get today's employees to stay and engage? Develop their careers. PR Newswire. Retrieved from https://www.prnewswire.com/news-releases/how-to-get-todays-employees-to-stay-and-engage-develop-their-careers-300860067.html
  49. McCarty, E. (2021). Integral and The Harris Poll Find Employees are giving Employers a Performance Review - Integral. Integral. Retrieved 24 November 2021, from https://www.teamintegral.com/2021/news-release-integral-employee-activation-index/
  50. McCarty, E. (2021). Integral and The Harris Poll Find Employees are giving Employers a Performance Review - Integral. Integral. Retrieved 24 November 2021, from https://www.teamintegral.com/2021/news-release-integral-employee-activation-index/
  51. Bureau of Labor Statistics. (2021). News Release - The Employment Situation - October 2021 (Ebook). Retrieved 24 November 2021, from https://www.bls.gov/news.release/pdf/empsit.pdf
  52. Scott, A., Kapor Klein, F., u0026amp; Onovakpuri, U. (2017). Tech Leavers Study (Ebook). Retrieved 24 November 2021, from https://www.kaporcenter.org/wp-content/uploads/2017/08/TechLeavers2017.pdf.
  53. Young, E., Wajcman, J. and Sprejer, L. (2021). Where are the Women? Mapping the Gender Job Gap in AI. Policy Briefing: Full Report. The Alan Turing Institute.
  54. Metz, C. (2021). A second Google A.I. researcher says the company fired her.. Nytimes.com. Retrieved 24 November 2021, from https://www.nytimes.com/2021/02/19/technology/google-ethical-artificial-intelligence-team.html
  55. Myrow, R. (2021). Pinterest Sounds A More Contrite Tone After Black Former Employees Speak Out. Npr.org. Retrieved 24 November 2021, from https://www.npr.org/2020/06/23/881624553/pinterest-sounds-a-more-contrite-tone-after-black-former-employees-speak-out
  56. Scheer, S. (2021). The Tech Sector’s Big Disability Inclusion Problem. ERE. Retrieved from https://www.ere.net/the-tech-sectors-big-disability-inclusion-problem/
  57. Robinson, O. C. (2014). Sampling in interview-based qualitative research: A theoretical and practical guide. Qualitative research in psychology, 11(1), 25-41.
  58. Yancey, A. K., Ortega, A. N., u0026amp; Kumanyika, S. K. (2006). Effective recruitment and retention of minority research participants. Annu. Rev. Public Health, 27, 1-28.
  59. Hill, C. E., Knox, S., Thompson, B. J., Williams, E. N., Hess, S. A., u0026amp; Ladany, N. (2005). Consensual qualitative research: An update. Journal of counseling psychology, 52(2), 196.
  60. Gunaratnam, Y. (2003). Researching'race'and ethnicity: Methods, knowledge and power. Sage.
  61. Race and Ethnicity. American Sociological Association. (2022). Retrieved 29 January 2022, archived at https://web.archive.org/web/20190821170406/https://www.asanet.org/topics/race-and-ethnicity
  62. University of Minnesota Libraries (2022). 10.2 The Meaning of Race and Ethnicity. Open.lib.umn.edu. Retrieved 29 January 2022, from https://open.lib.umn.edu/sociology/chapter/10-2-the-meaning-of-race-and-ethnicity/.
  63. Sue, Derald Wing, Christina M. Capodilupo, Gina C. Torino, Jennifer M. Bucceri, Aisha Holder, Kevin L. Nadal, and Marta Esquilin.
  64. https://adata.org/glossary-terms#D
Table of Contents
1
2
3
4
5
6
7
8
9