Guidance for Inclusive AI

Practicing Participatory Engagement

AI is reshaping our lives and society.

From its use for hiring decisions to healthcare diagnoses to how we consume media, we are already witnessing how data-driven technologies can help us address social inequality, but also how it can worsen it. Without the voices of those most affected in its development and deployment, we risk deepening the very divides we hope to close.

Yet, despite growing demand from the public and responsible AI advocates for approaches that draw in broader, more diverse communities to the AI decision-making process, product teams often struggle to move from theory to practice when engaging socially marginalized communities. As AI’s influence grows, it is more important than ever for the people and organizations who develop and deploy AI-driven systems to work in close partnership with those who are impacted by it. Everyone, from companies whose core business is developing AI systems to organizations adapting AI tools to improve their digital products, can ensure AI is developed and deployed more inclusively.

This framework supports AI developing and deploying teams navigating engagements with their clients, users, and those ultimately impacted by their AI systems in a manner that engenders trust and meets the needs of those most excluded.

PAI’s Guidance for Inclusive AI offers curated resources for practitioners and leaders in the commercial sector. Please select the role and level of experience most aligned with your needs.

Since 2023, PAI’s Global Task Force for Inclusive AI, a body of leading experts on participatory engagement practices from academia, civil society, and industry (specifically, PAI’s “Big Tech” Partners), have worked to develop new guidance for AI practitioners operating in commercial AI spaces. This framework of values, tactics, and practices helps developers and deployers work more closely with non-technical audiences.

The Guidance is meant to serve as a means to break down the complexity of public engagement strategies to more digestible, easier to navigate components. There is no perfect solution or one-size-fits-all framework for public participation. However, by thoughtfully considering each of these different dimensions of public engagement, it is possible to work within the limitations that arise with corporate-led public engagement activities to mitigate harms and work towards technology that improves everyone’s lives. PAI is committed to updating and evolving this resource to address new challenges and opportunities arising from new technological developments and the public’s understanding and involvement in AI governance.

Eyes Off My Data

Exploring Differentially Private Federated Statistics To Support Algorithmic Bias Assessments Across Demographic Groups

PAI Staff

Executive Summary

Executive Summary

Designing and deploying algorithmic systems that work as expected every time for all people and situations remains a challenge and a priority. Rigorous pre- and post-deployment fairness assessments are necessary to surface any potential bias in algorithmic systems. As they often involve collecting new user data, including sensitive demographic data, post-deployment fairness assessments to observe whether the algorithm is operating in ways that disadvantage any specific group of people can pose additional challenges to organizations. The collection and use of demographic data is difficult for organizations because it is entwined with highly contested social, regulatory, privacy, and economic considerations. Over the past several years, Partnership on AI (PAI) has investigated key risks and harms individuals and communities face when companies collect and use demographic data. In addition to well-known data privacy and security risks, such harms can stem from having one’s social identity being miscategorized or data being used beyond data subjects’ expectations, which PAI has explored through our demographic data workstream. These risks and harms are particularly acute for socially marginalized groups, such as people of color, women, and LGBTQIA+ people.

Given these risks and concerns, organizations developing digital technology are invested in the responsible collection and use of demographic data to identify and address algorithmic bias. For example, in an effort to deploy algorithmically driven features responsibly, Apple introduced IDs in Apple Wallet with mechanisms in place to help Apple and their partner issuing state authorities (e.g., departments of motor vehicles) identify any potential biases users may experience when adding their IDs to their iPhones.IDs in Wallet, in partnership with state identification-issuing authorities (e.g., departments of motor vehicles), were only available in select US states at the time of the writing of this report.

In addition to pre-deployment algorithmic fairness testing, Apple followed a post-deployment assessment strategy as well. As part of IDs in Wallet, Apple applied differentially private federated statistics as a way to protect users’ data, including their demographic data. The main benefit of using differentially private federated statistics is the preservation of data privacy by combining the features of differential privacy (e.g., adding statistical noise to data to prevent re-identification) and federated statistics (e.g., analyzing user data on individual devices, rather than on a central server, to avoid the creation and transfer of datasets that can be hacked or otherwise misused). What is less clear is whether differentially private federated statistics can attend to some of the other risks and harms associated with the collection and analysis of demographic data. To understand this, a sociotechnical lens is necessary to understand the potential social impact of the application of a technical approach.

This report is the result of two expert convenings independently organized and hosted by PAI. As a partner organization of PAI, Apple shared details about the use of differentially private federated statistics as part of their post-deployment algorithmic bias assessment for the release of this new feature.

During the convenings, responsible AI, algorithmic fairness, and social inequality experts discussed how algorithmic fairness assessments can be strengthened, challenged, or otherwise unaffected by the use of differentially private federated statistics. While the IDs in Wallet use case is limited to the US context, the participants expanded the scope of their discussion to consider differential private federated statistics in different contexts. Recognizing that data privacy and security are not the only concerns people have regarding the collection and use of their demographic data, participants were directed to consider whether differentially private federated statistics could also be leveraged to attend to some of the other social risks that can arise, particularly for marginalized demographic groups.

The multi-disciplinary participant group repeatedly emphasized the importance of having both pre- and post-deployment algorithmic fairness assessments throughout the development and deployment of an AI-driven system or product/feature. Post-deployment assessments are especially important as they enable organizations to monitor algorithmic systems once deployed in real-life social, political, and economic contexts. They also recognized the importance of thoughtfully collecting key demographic data in order to help identify group-level algorithmic harms.

The expert participants, however, clearly stated that a secure and privacy-preserving way of collecting and analyzing sensitive user data is, on its own, insufficient to deal with the risks and harms of algorithmic bias. In fact, they expressed that such a technique is not entirely sufficient for dealing with the risks and harms of collecting demographic data. Instead, the convening participants identified key choice points facing AI-developing organizations to ensure the use of differentially private federated statistics contributes to overall alignment with responsible AI principles and ethical demographic data collection and use.

This report provides an overview of differentially private federated statistics and the different choice points facing AI-developing organizations in applying differentially private federated statistics in their overall algorithmic fairness assessment strategies. Recommendations for best practices are organized into two parts:

  1. General considerations that any AI-developing organization should factor into their post-deployment algorithmic fairness assessment
  2. Design choices specifically related to the use of differentially private federated statistics within a post-deployment algorithmic fairness strategy

The choice points identified by the expert participants emphasize the importance of carefully applying differentially private federated statistics in the context of algorithmic bias assessment. For example, several features of the technique can be determined in such a way that reduces the efficacy of the privacy-preserving and security-enhancing aspects of differentially private federated statistics. Apple’s approach to using differentially private federated statistics aligned with some of the practices suggested during the expert convenings: the decision to limit the data retention period (90 days), allowing users to actively opt-into data sharing (rather than creating an opt-out model), clearly and simply sharing what data the user will be providing for the assessment, and maintaining organizational oversight of the query process and parameters.

The second set of recommendations surfaced by the expert participants primarily focus on the resources (e.g., financial, time allocation, and staffing) necessary to achieve a level of alignment and clarity on the nature of “fairness” and “equity” AI-developing organizations are seeking for their AI-driven tools and products/features. While these considerations may seem tangential, expert participants emphasized the importance of establishing a robust foundation on which differentially private federated statistics could be effectively utilized. Differentially private federated statistics, in and of itself, does not mitigate all the potential risks and harms related to collecting and analyzing sensitive demographic data. It can, however, strengthen overall algorithmic fairness assessment strategies by supporting better data privacy and security throughout the assessment process.

Eyes Off My Data

Executive Summary

Introduction

The Challenges of Algorithmic Fairness Assessments

Prioritization of Data Privacy: An Incomplete Approach for Demographic Data Collection?

Premise of the Project

A Sociotechnical Framework for Assessing Demographic Data Collection

Differentially Private Federated Statistics

Differential Privacy

Federated Statistics

Differentially Private Federated Statistics

A Sociotechnical Examination of Differentially Private Federated Statistics as an Algorithmic Fairness Technique

General Considerations for Algorithmic Fairness Assessment Strategies

Design Considerations for Differentially Private Federated Statistics

Conclusion

Acknowledgments

Funding Disclosure

Appendices

Appendix 1: Fairness, Transparency and Accountability Program Area at Partnership on AI

Appendix 2: Case Study Details

Appendix 3: Multistakeholder Convenings

Appendix 4: Glossary

Appendix 5: Detailed Summary of Challenges and Risks Associated with Demographic Data Collection and Analysis

Table of Contents
1
2
3
4
5
6
7
8
9
10

After the Offer: The Role of Attrition in AI’s ‘Diversity Problem’

Jeffrey Brown

Executive Summary

As a field, AI struggles to retain team members from diverse backgrounds. Given the far-reaching effects of algorithmic systems and the documented harms to marginalized communities, the fact that these communities are not represented on AI teams is particularly troubling. Why is this such a widespread phenomenon and what can be done to close the gap? This research paper, “After the Offer: The Role of Attrition in AI’s ‘Diversity Problem’” seeks to answer these questions, providing four recommendations for how organizations can make the AI field more inclusive. Click the button below to download a summary of these recommendations or continue on to read the paper in full.

Summary of Recommendations

Amid heightened attention to society-wide racial and social injustice, organizations in the AI space have been urged to investigate the harmful effects that AI has had on marginalized populations. It’s an issue that engineers, researchers, project managers, and various leaders in both tech companies and civil society organizations have devoted significant time and resources to in recent years. In examining the effects of AI, organizations must consider who exactly has been designing these technologies.

Diversity reports have revealed that the people working at the organizations that develop and deploy AI lack diversity across several dimensions. While organizations have blamed pipeline problems in the past, research has increasingly shown that once workers belonging to minoritized identities get hired in these spaces, systemic difficulties affect their experiences in ways that their peers from dominant groups do not have to worry about.

Attrition in the tech industry is a problem that disproportionately affects minoritized workers. In AI, where technologies already have a disproportionately negative impact on these communities, this is especially troublesome.

Minoritized Workers

This report uses minoritized workers as an umbrella term to refer to people whose identities (in categories such as race, ethnicity, gender, or ability) have been historically marginalized by those in dominant social groups. The minoritized workers in this study include people who identified as minoritized within the identity categories of race and ethnicity, gender identity, sexual orientation, ability, and immigration status. Because this study was international in scope, it is important to note that these categories are relative to their social context.

We are left wondering: What leads to these folks leaving their teams, organizations, or even the AI field more broadly? What about the AI field in particular influences these people to stay or leave? And what can organizations do to stem this attrition to make their environments more inclusive?

The current study uses interviews with folks belonging to minoritized identities across the AI field, managers, and DEI (diversity, equity, and inclusion)- leaders in tech to get rich information about what aspects of cultures within an organization promote inclusion or contribute to attrition. Themes that emerged during these interviews formed 3 key takeaways:

  1. Diversity makes for better team climates
  2. Systemic supports are difficult but necessary to undo the current harms to minoritized workers
  3. Individual efforts to change organizational culture fall disproportionately on minoritized folks who are usually not professionally rewarded for their efforts

In line with these takeaways, the study makes 4 recommendations about what can be done to make the AI field more inclusive for workers:

  1. Organizations must systemically support ERGs
  2. Organizations must intentionally diversify leadership and managers
  3. DEI trainings must be specific in order to be effective and be more connected to the content of AI work
  4. Organizations must interrogate their values as practiced and fundamentally alter them to include the perspectives of people who are not White, cis, or male

These takeaways and recommendations are explored in more depth below.

Key Takeaways

Key Takeaways

1. Diversity makes for better team climates

Across interviews, participants consistently expressed that managers who belonged to minoritized identities or who took the time to learn about working with diverse identities were more supportive of their needs and career goals. Such efforts reportedly resulted in teams that were also more diverse, inclusive, interdisciplinary, and engendering of a positive team culture/climate. In these environments, workers belonging to minoritized identities thrived. A diversity in backgrounds and perspectives was particularly important for AI teams that needed to solve interdisciplinary problems.

Conversely, the negative impact of work environments that were sexist or where participants experienced acts of prejudice such as microaggressions was also a recurring theme.

While collaborative or positive work environments were also a common theme, such environments did not in themselves negate predominant cultures which deprioritized “DEI-focused” work, work that was highly interdisciplinary, or work that did not serve the dominant group. Negative organizational cultures seemed to exacerbate experiences of prejudice or discrimination on AI teams.

2. Systemic supports are difficult but necessary to undo the current harms to minoritized workers

Participants belonging to minoritized identities said that they either left or intended to leave organizations that did not support their continued career growth or possessed values that did not align with their own. Consistent with this, participants described examples of their organizations not valuing the content of their work.

Participants also tied their desires to leave with instances of prejudice or discrimination, which may also be related to “toxic” work environments. Some participants reported instances of being tokenized or being subject to negative stereotypes about their identity groups, somewhat reflective of wider contexts in tech beyond AI.

Systemic supports include incentive structures that allow minoritized workers to succeed at every level, from the teams that they work with actively validating their experiences to their managers finding the best ways for them to deliver work products in accordance with both individual and institutional needs. Guidelines for promotion that recognize the barriers these workers face in environments mostly occupied by dominant group norms are another important support.

3. Individual efforts to change organizational culture fall disproportionately on minoritized folks who are usually not professionally rewarded for their efforts

Individuals discussed ways in which they tried to make their workplaces or teams more inclusive or otherwise sought to incorporate diverse perspectives into their work around AI. Participants sometimes had to contend with bias against DEI efforts, reporting that other workers in their organizations would dismiss their efforts as lacking rigor or focus on the product.

There were some institutional efforts to foster a more inclusive culture, most commonly DEI trainings. DEI trainings that were very specific to some groups (e.g., gender diverse folks, Black people) were reported as being the most effective. However, even when they were specific, DEI trainings seemed to be disconnected from some aspects of the workplace climate or the content of what teams were working on.

Participants who mentioned Employee Resource Groups (ERGs) uniformly praised them, discussing the huge positive impact they had on a personal level, forming the bases of their social support networks in their organizations and having a strong impact on their ability to integrate aspects of their identities or other “DEI topics” they were passionate about into their work.

Recommendations

Recommendations

1. Organizations must systemically support ERGs

Employees specifically named ERGs as one of their main sources of support even in work environments that were otherwise toxic.. Additionally, ERGs provided built-in mentorship for those who did not have ready access to mentors or whose supervisors had not done the work to understand the kinds of support needed for those of minoritized identities to thrive in predominantly White and male environments.

What makes this recommendation work?

Within these ERGs, there existed other grass-roots initiatives that supported workers, such as informal talking circles and networks of employees that essentially provided peer mentoring that participants found crucial to navigating White- and male-dominated spaces. The mentorship provided by ERGs was also essential when HR failed to provide systemic support for staff and instead prioritized protecting the organization.

What must be in place?

While participants uniformly praised ERGs, they required large amounts of time from staff members that detracted from their work. Such groups also ran the risk of getting taken over by leadership and having their original mission derailed. Institutions should seek a balance between supporting these groups and giving them the freedom to organize in pursuit of their own best interests.

What won’t this solve?

ERGs will not necessarily make an organization’s AI or tech more inclusive. Rather, systematically supporting ERGs will provide more support and community for minoritized workers, which is meant to promote a more inclusive workplace in general.

2. Organizations must intentionally diversify leadership and managers
What makes this recommendation work?

Participants repeatedly pointed to managers and upper-level leaders who belonged to minoritized identities (especially racial ones) as important influences, changing policy that permeated through various levels of their organizations. A diverse workforce may also bring with it multiple perspectives, including those belonging to people from different disciplines who may be interested in working in the AI field due to the opportunity for interdisciplinary collaboration, research, and product development. Bringing in folks from various academic, professional, and technical backgrounds to solve problems is especially crucial for AI teams.

What must be in place?

There must be understanding about the reasons behind the lack of diversity and the “bigger picture” of how powerful groups more easily perpetuate power structures already in place. Participants spoke of managers who did not belong to minoritized identities themselves but who took the time to learn in depth about differences in power and privilege in the tech ecosystem, appreciating the diverse perspectives that workers brought. These managers, while not perfect, tended to take advocating for their reports very seriously, particularly female reports who often went overlooked.

What won’t this solve?

Intentionally diversifying leadership and managers will not automatically create a pipeline for diversity at the leadership level, nor will it automatically override institutional culture or policies that ignore DEI best practices.

3. DEI trainings must be specific in order to be effective and be more connected to the content of AI work
What makes this recommendation work?

Almost all participants reported that their organizations mandated some form of DEI training for all staff. These ranged widely, from very general ones to very specific trainings that discussed cultural competency about more specific groups of people (e.g., participants reported that there were trainings on anti-Black racism). Participants discussed that the more specific trainings tended to be more impactful.

What must be in place?

Organizations must invest in employees who see the importance of inclusive values in AI research and product design. Participants pointed to the importance of managers who had an ability to foster inclusive team values, which was not something that HR could mandate.

What won’t this solve?

As several participants observed, DEI trainings will not uproot or counteract institutional stigmas against DEI. It would take sustained effort and deliberate alignment of values for an organization to emphasize DEI in its work.

4. Organizations must interrogate their values as practiced and fundamentally alter them to include the perspectives of people who are not White, cis, or male
What makes this recommendation work?

Participants frequently reported that a misalignment of values was a primary reason for them leaving their organizations or wanting to leave their organizations. Participants in this sample discussed joining the AI field to create a positive impact while growing professionally. This led them to feeling disappointed when their organizations did not prioritize these goals (despite them being among their stated values).

What must be in place?

Participants found it frustrating when organizations stated that they valued diversity and then failed to live up to this value with hiring, promotion, and day-to-day operations, ignoring the voices of minoritized individuals. If diversity is truly a value, organizations may have to investigate their systems of norms and expectations that are fundamentally male, Eurocentric, and do not make space for those from diverse backgrounds. They then must take additional steps to consider how such systems influence their work in AI.

What won’t this solve?

Because achieving a fundamental re-alignment like this is a more comprehensive solution, it cannot satisfy the most immediate and urgent needs for reform. Short-term, organizations must work with DEI professionals to recognize how they are perpetuating potentially harmful norms of the dominant group and work to create policies that are more equitable. Longer term fixes may not, for instance, satisfy the immediate and urgent need for more diversity in leadership and teams in general.

After the Offer: The Role of Attrition in AI’s ‘Diversity Problem’

Executive Summary

Key Takeaways

Recommendations

Introduction

Why Study Attrition of Minoritized Workers in AI?

Background

Problems Due to Lack of Diversity of AI Teams

More Diverse Teams Yield Better Outcomes

Current Level of Diversity in Tech

Diversity in AI

What Has Been Done

What Has Been Done

What Has Been Done

Attrition in Tech

Current Study and Methodology

Recruitment

Participants

Measure

Procedure

Analysis

Results

Attrition

Culture

Efforts to Improve Inclusivity

Summary and the Path Forward

Acknowledgements

Appendices

Appendix 1: Recruitment Document

Appendix 2: Privacy Document

Appendix 3: Research Protocol

Appendix 4: Important Terms

Sources Cited

  1. Buolamwini, J., u0026amp; Gebru, T. (2018, January). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on fairness, accountability and transparency (pp. 77-91). PMLR.
  2. Zhao, D., Wang, A., u0026amp; Russakovsky, O. (2021). Understanding and Evaluating Racial Biases in Image Captioning. arXiv preprint arXiv:2106.08503.
  3. Feldstein, S. (2021). The Global Expansion of AI Surveillance. Carnegie Endowment for International Peace. Retrieved 17 September 2019, from https://carnegieendowment.org/2019/09/17/global-expansion-of-ai-surveillance-pub-79847.
  4. Firth, N. (2021). Apple Card is being investigated over claims it gives women lower credit limits. MIT Technology Review. Retrieved 23 November 2021, from https://www.technologyreview.com/2019/11/11/131983/apple-card-is-being-investigated-over-claims-it-gives-women-lower-credit-limits/.
  5. Howard, A., u0026amp; Isbell, C. (2021). Diversity in AI: The Invisible Men and Women. MIT Sloan Management Review. Retrieved 21 September 2020, from https://sloanreview.mit.edu/article/diversity-in-ai-the-invisible-men-and-women/.
  6. AI Now. (2019). Discriminating Systems: Gender, Race, and Power in AI (Ebook). Retrieved 23 November 2021.
  7. Swauger, S. (2021). Opinion | What's worse than remote school? Remote test-taking with AI proctors. NBC News. Retrieved 7 November 2020, from https://www.nbcnews.com/think/opinion/remote-testing-monitored-ai-failing-students-forced-undergo-it-ncna1246769
  8. Belani, G. (2021). AI Paving the Way for Remote Work | IEEE Computer Society. Computer.org. Retrieved 26 July 2021, from https://www.computer.org/publications/tech-news/trends/remote-working-easier-with-ai
  9. Scott, A., Kapor Klein, F., and Onovakpuri, U. (2017). Tech Leavers Study (Ebook). Retrieved 24 November 2021, from https://www.kaporcenter.org/wp-content/uploads/2017/08/TechLeavers2017.pdf
  10. Women in the Workplace (2021). 2021. Retrieved 23 November 2021, from https://www.mckinsey.com/featured-insights/diversity-and-inclusion/women-in-the-workplace
  11. Silicon Valley Bank. (2021). 2020 Global Startup Outlook: Key insights from the Silicon Valley Bank startup outlook survey (Ebook). Retrieved 23 November 2021, from https://www.svb.com/globalassets/library/uploadedfiles/content/trends_and_insights/reports/startup_outlook_report/suo_global_report_2020-final.pdf
  12. Firth, N. (2021). Apple Card is being investigated over claims it gives women lower credit limits. MIT Technology Review. Retrieved 23 November 2021, from https://www.technologyreview.com/2019/11/11/131983/apple-card-is-being-investigated-over-claims-it-gives-women-lower-credit-limits/.
  13. Tomasev, N., McKee, K.R., Kay, J., u0026amp; Mohamed, S. (2021). Fairness for Unobserved Characteristics: Insights from technological impacts on queer communities. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (AIES ’21), Retrieved October 1, 2021 from https://doi.org/10.1145/3461702.3462540
  14. Martinez, E., u0026amp; Kirchner, L. (2021). The secret bias hidden in mortgage-approval algorithms | AP News. AP News. Retrieved 24 November 2021, from https://apnews.com/article/lifestyle-technology-business-race-and-ethnicity-mortgages-2d3d40d5751f933a88c1e17063657586
  15. Turner Lee, N., Resnick, P., u0026amp; Barton, G. (2021). Algorithmic bias detection and mitigation: Best practices and policies to reduce consumer harms. Brookings. Retrieved 24 November 2021, from https://www.brookings.edu/research/algorithmic-bias-detection-and-mitigation-best-practices-and-policies-to-reduce-consumer-harms/.
  16. Rock, D., u0026amp; Grant, H. (2016). Why diverse teams are smarter. Harvard Business Review, 4(4), 2-5.
  17. Wang, J., Cheng, G. H. L., Chen, T., u0026amp; Leung, K. (2019). Team creativity/innovation in culturally diverse teams: A meta‐analysis. Journal of Organizational Behavior, 40(6), 693-708.
  18. Lorenzo, R., Voigt, N., Tsusaka, M., Krentz, M., u0026amp; Abouzahr, K. (2018). How Diverse Leadership Teams Boost Innovation. BCG Global. Retrieved 24 November 2021, from https://www.bcg.com/publications/2018/how-diverse-leadership-teams-boost-innovation
  19. Hoobler, J. M., Masterson, C. R., Nkomo, S. M., u0026amp; Michel, E. J. (2018). The business case for women leaders: Meta-analysis, research critique, and path forward. Journal of Management, 44(6), 2473-2499.
  20. Chakravorti, B. (2020). To Increase Diversity, U.S. Tech Companies Need to Follow the Talent. Harvard Business Review. Retrieved 24 November 2021, from https://hbr.org/2020/12/to-increase-diversity-u-s-tech-companies-need-to-follow-the-talent.
  21. Accenture. (2018). Getting to Equal 2018: The Disability Inclusion Advantage. Retrieved from https://www.accenture.com/_acnmedia/pdf-89/accenture-disability-inclusion-research-report.pdf
  22. Whittaker, M., Alper, M., Bennett, C. L., Hendren, S., Kaziunas, L., Mills, M., ... u0026amp; West, S. M. (2019). Disability, bias, and AI. AI Now Institute.
  23. Heater, B. (2020). Tech companies respond to George Floyd’s death, ensuing protests and systemic racism. Techcrunch.com. Retrieved 24 November 2021, from https://techcrunch.com/2020/06/01/tech-co-protests/.
  24. Google (2021). 2021 Diversity Annual Report. Retrieved 24 November 2021, from https://static.googleusercontent.com/media/diversity.google/en//annual-report/static/pdfs/google_2021_diversity_annual_report.pdf?cachebust=2e13d07.
  25. Facebook. (2021). Facebook Diversity Update: Increasing Representation in Our Workforce and Supporting Minority-Owned Businesses | Meta. Meta. Retrieved 24 November 2021, from https://about.fb.com/news/2021/07/facebook-diversity-report-2021/.
  26. Amazon Staff. (2020). Our workforce data. US About Amazon. Retrieved 24 November 2021, from https://www.aboutamazon.com/news/workplace/our-workforce-data
  27. Adobe. (2021). Adobe Diversity By the Numbers. Adobe. Retrieved 24 November 2021, from https://www.adobe.com/diversity/data.html
  28. National Center for Women in Tech. (2020). NCWIT Scorecard: The Status of Women in Computing (2020 Update). Retrieved https://ncwit.org/resource/scorecard/
  29. Center for American Progress (2012). The State of diversity in Today’s workforce. Retrieved from https://www.americanprogress.org/article/the-state-of-diversity-in-todays-workforce/
  30. Gillenwater, S. (2020). Meet the CIOs of the Fortune 500 — 2021 edition. Boardroom Insiders. Retrieved from https://www.boardroominsiders.com/blog/meet-the-cios-of-the-fortune-500-2021-edition
  31. Stack Overflow. (2020). 2020 Developer Survey. Retrieved from https://insights.stackoverflow.com/survey/2020#developer-profile-disability-status-mental-health-and-differences
  32. Stanford HAI. (2021). The AI Index Report: Measuring Trends in Artificial intelligence (Ebook). Retrieved 24 November 2021, from https://aiindex.stanford.edu/wp-content/uploads/2021/03/2021-AI-Index-Report-_Chapter-6.pdf.
  33. Chi, N., Lurie, E., u0026amp; Mulligan, D. K. (2021). Reconfiguring Diversity and Inclusion for AI Ethics. arXiv preprint arXiv:2105.02407.
  34. Selyukh, A. (2016). Why Some Diversity Thinkers Aren't Buying The Tech Industry's Excuses. NPR. Retrieved 24 November 2021, from https://www.npr.org/sections/alltechconsidered/2016/07/19/486511816/why-some-diversity-thinkers-arent-buying-the-tech-industrys-excuses.
  35. National Association for Educational Progress. (2020). NAEP Report Card: Mathematics. Retrieved from https://www.nationsreportcard.gov/mathematics/nation/achievement/?grade=4
  36. Ladner, R. (2021). Expanding the pipeline: The status of persons with disabilities in the Computer Science Pipeline. Retrieved February 1, 2022, from https://cra.org/cra-wp/expanding-the-pipeline-the-status-of-persons-with-disabilities-in-the-computer-science-pipeline/
  37. Center for Evaluating the Research Pipeline (2021). “Data Buddies Survey 2019 Annual Report”. Computing Research Association, Washington, D.C.
  38. Code.org. (2021). Code.org's Approach to Diversity u0026amp; Equity in Computer Science. Code.org. Retrieved 24 November 2021, from https://code.org/diversity
  39. Zweben, S., u0026amp; Bizot, B. (2021). 2020 Taulbee Survey: Bachelor’s and Doctoral Degree Production Growth Continues but New Student Enrollment Shows Declines (Ebook). Computing Research Association. Retrieved 24 November 2021, from https://cra.org/wp-content/uploads/2021/05/2020-CRA-Taulbee-Survey.pdf
  40. Computing Research Association (2017). Generation CS: Computer Science Undergraduate Enrollments Surge Since 2006
  41. The Higher Education Statistics Agency (2021). Higher Education Student Statistics. Retrieved from https://www.hesa.ac.uk/news/16-01-2020/sb255-higher-education-student-statistics/subjects
  42. BCS. (2014). Women in IT Survey (Ebook). BCS: The Chartered Institute for IT. Retrieved 24 November 2021, from https://www.bcs.org/media/4446/women-it-survey.pdf
  43. Inclusive Boards. (2018). Inclusive Tech Alliance Report 2018 (Ebook). Retrieved 24 November 2021, from https://www.inclusivetechalliance.co.uk/wp-content/uploads/2019/07/Inclusive-Tech-Alliance-Report.pdf.
  44. Atomico. (2020). The State of European Tech 2020. 2020.stateofeuropeantech.com. Retrieved 24 November 2021, from https://2020.stateofeuropeantech.com/chapter/diversity-inclusion/article/diversity-inclusion/.
  45. Chung-Yan, G. A. (2010). The nonlinear effects of job complexity and autonomy on job satisfaction, turnover, and psychological well-being. Journal of occupational health psychology, 15(3), 237.
  46. McKnight, D. H., Phillips, B., u0026amp; Hardgrave, B. C. (2009). Which reduces IT turnover intention the most: Workplace characteristics or job characteristics?. Information u0026amp; Management, 46(3), 167-174.
  47. Vaamonde, J. D., Omar, A., u0026amp; Salessi, S. (2018). From organizational justice perceptions to turnover intentions: The mediating effects of burnout and job satisfaction. Europe's journal of psychology, 14(3), 554.
  48. Instructure (2019). How to get today's employees to stay and engage? Develop their careers. PR Newswire. Retrieved from https://www.prnewswire.com/news-releases/how-to-get-todays-employees-to-stay-and-engage-develop-their-careers-300860067.html
  49. McCarty, E. (2021). Integral and The Harris Poll Find Employees are giving Employers a Performance Review - Integral. Integral. Retrieved 24 November 2021, from https://www.teamintegral.com/2021/news-release-integral-employee-activation-index/
  50. McCarty, E. (2021). Integral and The Harris Poll Find Employees are giving Employers a Performance Review - Integral. Integral. Retrieved 24 November 2021, from https://www.teamintegral.com/2021/news-release-integral-employee-activation-index/
  51. Bureau of Labor Statistics. (2021). News Release - The Employment Situation - October 2021 (Ebook). Retrieved 24 November 2021, from https://www.bls.gov/news.release/pdf/empsit.pdf
  52. Scott, A., Kapor Klein, F., u0026amp; Onovakpuri, U. (2017). Tech Leavers Study (Ebook). Retrieved 24 November 2021, from https://www.kaporcenter.org/wp-content/uploads/2017/08/TechLeavers2017.pdf.
  53. Young, E., Wajcman, J. and Sprejer, L. (2021). Where are the Women? Mapping the Gender Job Gap in AI. Policy Briefing: Full Report. The Alan Turing Institute.
  54. Metz, C. (2021). A second Google A.I. researcher says the company fired her.. Nytimes.com. Retrieved 24 November 2021, from https://www.nytimes.com/2021/02/19/technology/google-ethical-artificial-intelligence-team.html
  55. Myrow, R. (2021). Pinterest Sounds A More Contrite Tone After Black Former Employees Speak Out. Npr.org. Retrieved 24 November 2021, from https://www.npr.org/2020/06/23/881624553/pinterest-sounds-a-more-contrite-tone-after-black-former-employees-speak-out
  56. Scheer, S. (2021). The Tech Sector’s Big Disability Inclusion Problem. ERE. Retrieved from https://www.ere.net/the-tech-sectors-big-disability-inclusion-problem/
  57. Robinson, O. C. (2014). Sampling in interview-based qualitative research: A theoretical and practical guide. Qualitative research in psychology, 11(1), 25-41.
  58. Yancey, A. K., Ortega, A. N., u0026amp; Kumanyika, S. K. (2006). Effective recruitment and retention of minority research participants. Annu. Rev. Public Health, 27, 1-28.
  59. Hill, C. E., Knox, S., Thompson, B. J., Williams, E. N., Hess, S. A., u0026amp; Ladany, N. (2005). Consensual qualitative research: An update. Journal of counseling psychology, 52(2), 196.
  60. Gunaratnam, Y. (2003). Researching'race'and ethnicity: Methods, knowledge and power. Sage.
  61. Race and Ethnicity. American Sociological Association. (2022). Retrieved 29 January 2022, archived at https://web.archive.org/web/20190821170406/https://www.asanet.org/topics/race-and-ethnicity
  62. University of Minnesota Libraries (2022). 10.2 The Meaning of Race and Ethnicity. Open.lib.umn.edu. Retrieved 29 January 2022, from https://open.lib.umn.edu/sociology/chapter/10-2-the-meaning-of-race-and-ethnicity/.
  63. Sue, Derald Wing, Christina M. Capodilupo, Gina C. Torino, Jennifer M. Bucceri, Aisha Holder, Kevin L. Nadal, and Marta Esquilin.
  64. https://adata.org/glossary-terms#D
Table of Contents
1
2
3
4
5
6
7
8
9

Fairer Algorithmic Decision-Making and Its Consequences: Interrogating the Risks and Benefits of Demographic Data Collection, Use, and Non-Use

PAI Staff

Introduction and Background

Introduction

Introduction

Algorithmic decision-making has been widely accepted as a novel approach to overcoming the purported cognitive and subjective limitations of human decision makers by providing “objective” data-driven recommendations. Yet, as organizations adopt algorithmic decision-making systems (ADMS), countless examples of algorithmic discrimination continue to emerge. Harmful biases have been found in algorithmic decision-making systems in contexts such as healthcare, hiring, criminal justice, and education, prompting increasing social concern regarding the impact these systems are having on the wellbeing and livelihood of individuals and groups across society. In response, algorithmic fairness strategies attempt to understand how ADMS treat certain individuals and groups, often with the explicit purpose of detecting and mitigating harmful biases.

Many current algorithmic fairness techniques require access to data on a “sensitive attribute” or “protected category” (such as race, gender, or sexuality) in order to make performance comparisons and standardizations across groups. These demographic-based algorithmic fairness techniques assume that discrimination and social inequality can be overcome with clever algorithms and collection of the requisite data, removing broader questions of governance and politics from the equation. This paper seeks to challenge this assumption, arguing instead that collecting more data in support of fairness is not always the answer and can actually exacerbate or introduce harm for marginalized individuals and groups. We believe more discussion is needed in the machine learning community around the consequences of “fairer” algorithmic decision-making. This involves acknowledging the value assumptions and trade-offs associated with the use and non-use of demographic data in algorithmic systems. To advance this discussion, this white paper provides a preliminary perspective on these trade-offs derived from workshops and conversations with experts in industry, academia, government, and advocacy organizations as well as literature across relevant domains. In doing so, we hope that readers will better understand the affordances and limitations of using demographic data to detect and mitigate discrimination in institutional decision-making more broadly

Background

Background

Demographic-based algorithmic fairness techniques presuppose the availability of data on sensitive attributes or protected categories. However, previous research has highlighted that data on demographic categories, such as race and sexuality, are often unavailable due to a range of organizational challenges, legal barriers, and practical concerns Andrus, M., Spitzer, E., Brown, J., & Xiang, A. (2021). “What We Can’t Measure, We Can’t Understand”: Challenges to Demographic Data Procurement in the Pursuit of Fairness. ArXiv:2011.02282 (Cs). http://arxiv.org/abs/2011.02282. Some privacy laws, such as the EU’s GDPR, not only require
data subjects to provide meaningful consent when their data is collected, but also prohibit the collection of sensitive data such as race, religion, and sexuality. Some corporate privacy policies and standards, such as Privacy By Design, call for organizations to be intentional with their data collection practices, only collecting data they require and can specify a use for. Given the uncertainty around whether or not it is acceptable to ask users and customers for their sensitive demographic information, most legal and policy teams urge their corporations to err on the side of caution and not collect these types of data unless legally required to do so. As a
result, concerns over privacy often take precedence over ensuring product fairness since the trade-offs between mitigating bias and ensuring individual or group privacy are unclear Andrus et al., 2021.

In cases where sensitive demographic data can be collected, organizations must navigate a number of practical challenges throughout its procurement. For many organizations, sensitive demographic data is collected through self-reporting mechanisms. However, self reported data is often incomplete, unreliable, and unrepresentative, due in part to a lack of incentives for individuals to provide accurate
and full information Andrus et al., 2021. In some cases, practitioners choose to infer protected categories of individuals based on proxy information, a method which is largely inaccurate. Organizations also face difficulty capturing unobserved characteristics, such as disability, sexuality, and religion, as these categories are frequently missing and often unmeasurable Tomasev, N., McKee, K. R., Kay, J., & Mohamed, S. (2021). Fairness for Unobserved Characteristics: Insights from Technological Impacts on Queer Communities. ArXiv:2102.04257 (Cs). https://doi.org/10.1145/3461702.3462540. Overall, deciding on how to classify and categorize demographic data is an ongoing challenge, as demographic categories continue to shift and change over time and between contexts. Once demographic data is collected, antidiscrimination law and policies largely inhibit organizations from using this data since knowledge of sensitive categories opens the door to legal liability if discrimination is uncovered without a plan to successfully mitigate it Andrus et al., 2021.

In the face of these barriers, corporations looking to apply demographic-based algorithmic fairness techniques have called for guidance on how to responsibly collect and use demographic data. However, prescribing statistical definitions of fairness on algorithmic systems without accounting for the social, economic, and political systems in which they are embedded can fail to benefit marginalized
groups and undermine fairness efforts Bakalar, C., Barreto, R., Bogen, M., Corbett-Davies, S., Hall, M., Kloumann, I., Lam, M., Candela, J. Q., Raghavan, M., Simons, J., Tannen, J., Tong, E., Vredenburgh, K., & Zhao, J. (2021). Fairness On The Ground: Applying Algorithmic Fairness Approaches To Production Systems. 12.. Therefore, developing guidance requires a deeper understanding of the risks and trade-offs inherent to the use and non-use of demographic data. Efforts to detect and mitigate harms must account for the wider contexts and power structures that algorithmic systems, and the data that they draw on, are embedded in.

Finally, though this work is motivated by the documented unfairness of ADMS, it is critical to recognize that bias and discrimination are not the only possible harms stemming directly from ADMS. As recent papers and reports have forcefully argued, focusing on debiasing datasets and algorithms is (1) often misguided because proposed debiasing methods are only relevant for a subset of the kinds of bias ADMS introduce or reinforce, and (2) likely to draw attention away from other, possibly more salient harms Balayn, A., & Gürses, S. (2021). Beyond Debiasing. European Digital Rights. https://edri.org/wp-content/ uploads/2021/09/EDRi_Beyond-Debiasing-Report_Online.pdf. In the first case, harms from tools such as recommendation systems, content moderation systems, and computer vision systems might be characterized as a result of various forms of bias, but resolving bias in those systems generally involves adding in more context to better understand differences between groups, not just trying to treat groups more similarly. In the second case, there are many ADMS that are clearly susceptible to bias, yet the greater source of harm could arguably be the deployment of the system in the first place. Pre-trial detention risk scores provide one such example. Using statistical correlations to determine if someone should be held without bail, or, in other words, potentially punishing individuals for attributes outside of their control and past decisions unrelated to what they are currently being charged for, is itself a significant deviation from legal standards and norms, yet most of the debate has focused around how biased the predictions are. Attempting to collect demographic data in these cases will likely do more harm than good, as demographic data will
draw attention away from harms inherent to the system and towards seemingly resolvable issues around bias.

Fairer Algorithmic Decision-Making and Its Consequences: Interrogating the Risks and Benefits of Demographic Data Collection, Use, and Non-Use

Introduction and Background

Introduction

Background

Social Risks of Non-Use

Hidden Discrimination

''Colorblind'' Decision-Making

Invisibility to Institutions of Importance

Social Risks of Use

Risks to Individuals

Encroachments on Privacy and Personal Life

Individual Misrepresentation

Data Misuse and Use Beyond Informed Consent

Risks to Communities

Expanding Surveillance Infrastructure in the Pursuit of Fairness

Misrepresentation and Reinforcing Oppressive or Overly Prescriptive Categories

Private Control Over Scoping Bias and Discrimination

Conclusion and Acknowledgements

Conclusion

Acknowledgements

Sources Cited

  1. Andrus, M., Spitzer, E., Brown, J., & Xiang, A. (2021). “What We Can’t Measure, We Can’t Understand”: Challenges to Demographic Data Procurement in the Pursuit of Fairness. ArXiv:2011.02282 (Cs). http://arxiv.org/abs/2011.02282
  2. Andrus et al., 2021
  3. Andrus et al., 2021
  4. Tomasev, N., McKee, K. R., Kay, J., & Mohamed, S. (2021). Fairness for Unobserved Characteristics: Insights from Technological Impacts on Queer Communities. ArXiv:2102.04257 (Cs). https://doi.org/10.1145/3461702.3462540
  5. Andrus et al., 2021
  6. Bakalar, C., Barreto, R., Bogen, M., Corbett-Davies, S., Hall, M., Kloumann, I., Lam, M., Candela, J. Q., Raghavan, M., Simons, J., Tannen, J., Tong, E., Vredenburgh, K., & Zhao, J. (2021). Fairness On The Ground: Applying Algorithmic Fairness Approaches To Production Systems. 12.
  7. Balayn, A., & Gürses, S. (2021). Beyond Debiasing. European Digital Rights. https://edri.org/wp-content/ uploads/2021/09/EDRi_Beyond-Debiasing-Report_Online.pdf
  8. Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M., Ruggieri, S., Turini, F., Papadopoulos, S., Krasanakis, E., Kompatsiaris, I., Kinder‐Kurlanda, K., Wagner, C., Karimi, F., Fernandez, M., Alani, H., Berendt, B., Kruegel, T., Heinze, C., … Staab, S. (2020). Bias in data‐driven artificial intelligence systems—An introductory survey. WIREs Data Mining and Knowledge Discovery, 10(3). https://doi.org/10.1002/widm.1356
  9. Olteanu, A., Castillo, C., Diaz, F., & Kıcıman, E. (2019). Social Data: Biases, Methodological Pitfalls, and Ethical Boundaries. Frontiers in Big Data, 2, 13. https://doi.org/10.3389/fdata.2019.00013
  10. Rimfeld, K., & Malanchini, M. (2020, August 21). The A-Level and GCSE scandal shows teachers should be trusted over exams results. Inews.Co.Uk. https://inews.co.uk/opinion/a-level-gcse-results-trust-teachers-exams-592499
  11. Davidson, T., Warmsley, D., Macy, M., & Weber, I. (2017). Automated Hate Speech Detection and the Problem of Offensive Language. Proceedings of the International AAAI Conference on Web and Social Media, 11(1), 512–515.
  12. Davidson, T., Bhattacharya, D., & Weber, I. (2019). Racial Bias in Hate Speech and Abusive Language Detection Datasets. ArXiv:1905.12516 (Cs). http://arxiv.org/abs/1905.12516
  13. Bogen, M., Rieke, A., & Ahmed, S. (2020). Awareness in Practice: Tensions in Access to Sensitive Attribute Data for Antidiscrimination. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 492–500. https://doi.org/10.1145/3351095.3372877
  14. Executive Order On Advancing Racial Equity and Support for Underserved Communities Through the Federal Government. (2021, January 21). The White House. https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/20/executive-order-advancing-racial-equity-and-support-for-underserved-communities-through-the-federal-government/
  15. Executive Order on Diversity, Equity, Inclusion, and Accessibility in the Federal Workforce. (2021, June 25). The White House. https://www.whitehouse.gov/briefing-room/presidential-actions/2021/06/25/executive-order-on-diversity-equity-inclusion-and-accessibility-in-the-federal-workforce/
  16. Kusner, M. J., Loftus, J., Russell, C., & Silva, R. (2017). Counterfactual Fairness. Advances in Neural Information Processing Systems, 30. https://papers.nips.cc/paper/2017/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html
  17. Harned, Z., & Wallach, H. (2019). Stretching human laws to apply to machines: The dangers of a ’Colorblind’ Computer. Florida State University Law Review, Forthcoming.
  18. Washington, A. L. (2018). How to Argue with an Algorithm: Lessons from the COMPAS-ProPublica Debate. Colorado Technology Law Journal, 17, 131.
  19. Rodriguez, L. (2020). All Data Is Not Credit Data: Closing the Gap Between the Fair Housing Act and Algorithmic Decisionmaking in the Lending Industry. Columbia Law Review, 120(7), 1843–1884.
  20. Hu, L. (2021, February 22). Law, Liberation, and Causal Inference. LPE Project. https://lpeproject.org/blog/law-liberation-and-causal-inference/
  21. Bonilla-Silva, E. (2010). Racism Without Racists: Color-blind Racism and the Persistence of Racial Inequality in the United States. Rowman & Littlefield.
  22. Plaut, V. C., Thomas, K. M., Hurd, K., & Romano, C. A. (2018). Do Color Blindness and Multiculturalism Remedy or Foster Discrimination and Racism? Current Directions in Psychological Science, 27(3), 200–206. https://doi.org/10.1177/0963721418766068
  23. Eubanks, V. (2017). Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. St. Martin’s Press
  24. Banco, E., & Tahir, D. (2021, March 9). CDC under scrutiny after struggling to report Covid race, ethnicity data. POLITICO. https://www.politico.com/news/2021/03/09/hhs-cdc-covid-race-data-474554
  25. Banco, E., & Tahir, D. (2021, March 9). CDC under scrutiny after struggling to report Covid race, ethnicity data. POLITICO. https://www.politico.com/news/2021/03/09/hhs-cdc-covid-race-data-474554
  26. Elliott, M. N., Morrison, P. A., Fremont, A., McCaffrey, D. F., Pantoja, P., & Lurie, N. (2009). Using the Census Bureau’s surname list to improve estimates of race/ethnicity and associated disparities. Health Services and Outcomes Research Methodology, 9(2), 69.
  27. Shimkhada, R., Scheitler, A. J., & Ponce, N. A. (2021). Capturing Racial/Ethnic Diversity in Population-Based Surveys: Data Disaggregation of Health Data for Asian American, Native Hawaiian, and Pacific Islanders (AANHPIs). Population Research and Policy Review, 40(1), 81–102. https://doi.org/10.1007/s11113-020-09634-3
  28. Poon, O. A., Dizon, J. P. M., & Squire, D. (2017). Count Me In!: Ethnic Data Disaggregation Advocacy, Racial Mattering, and Lessons for Racial Justice Coalitions. JCSCORE, 3(1), 91–124. https://doi.org/10.15763/issn.2642-2387.2017.3.1.91-124
  29. Fosch-Villaronga, E., Poulsen, A., Søraa, R. A., & Custers, B. H. M. (2021). A little bird told me your gender: Gender inferences in social media. Information Processing & Management, 58(3), 102541. https://doi.org/10.1016/j.ipm.2021.102541
  30. Browne, S. (2015). Dark Matters: On the Surveillance of Blackness. In Dark Matters. Duke University Press. https://doi.org/10.1515/9780822375302
  31. Eubanks, 2017
  32. Farrand, T., Mireshghallah, F., Singh, S., & Trask, A. (2020). Neither Private Nor Fair: Impact of Data Imbalance on Utility and Fairness in Differential Privacy. Proceedings of the 2020 Workshop on Privacy-Preserving Machine Learning in Practice, 15–19. https://doi.org/10.1145/3411501.3419419
  33. Jagielski, M., Kearns, M., Mao, J., Oprea, A., Roth, A., Sharifi -Malvajerdi, S., & Ullman, J. (2019). Differentially Private Fair Learning. Proceedings of the 36th International Conference on Machine Learning, 3000–3008. https://bit.ly/3rmhET0
  34. Kuppam, S., Mckenna, R., Pujol, D., Hay, M., Machanavajjhala, A., & Miklau, G. (2020). Fair Decision Making using Privacy-Protected Data. ArXiv:1905.12744 (Cs). http://arxiv.org/abs/1905.12744
  35. Quillian, L., Pager, D., Hexel, O., & Midtbøen, A. H. (2017). Meta-analysis of field experiments shows no change in racial discrimination in hiring over time. Proceedings of the National Academy of Sciences, 114(41), 10870–10875. https://doi.org/10.1073/pnas.1706255114
  36. Quillian, L., Lee, J. J., & Oliver, M. (2020). Evidence from Field Experiments in Hiring Shows Substantial Additional Racial Discrimination after the Callback. Social Forces, 99(2), 732–759. https://doi.org/10.1093/sf/soaa026
  37. Cabañas, J. G., Cuevas, Á., Arrate, A., & Cuevas, R. (2021). Does Facebook use sensitive data for advertising purposes? Communications of the ACM, 64(1), 62–69. https://doi.org/10.1145/3426361
  38. Datta, A., Tschantz, M. C., & Datta, A. (2015). Automated Experiments on Ad Privacy Settings: A Tale of Opacity, Choice, and Discrimination. Proceedings on Privacy Enhancing Technologies, 2015(1), 92–112. https://doi.org/10.1515/popets-2015-0007
  39. Hupperich, T., Tatang, D., Wilkop, N., & Holz, T. (2018). An Empirical Study on Online Price Differentiation. Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy, 76–83. https://doi.org/10.1145/3176258.3176338
  40. Mikians, J., Gyarmati, L., Erramilli, V., & Laoutaris, N. (2013). Crowd-assisted search for price discrimination in e-commerce: First results. Proceedings of the Ninth ACM Conference on Emerging Networking Experiments and Technologies, 1–6. https://doi.org/10.1145/2535372.2535415
  41. Cabañas et al., 2021
  42. Leetaru, K. (2018, July 20). Facebook As The Ultimate Government Surveillance Tool? Forbes. https://www.forbes.com/sites/kalevleetaru/2018/07/20/facebook-as-the-ultimate-government-surveillance-tool/
  43. Rozenshtein, A. Z. (2018). Surveillance Intermediaries (SSRN Scholarly Paper ID 2935321). Social Science Research Network. https://papers.ssrn.com/abstract=2935321
  44. Rocher, L., Hendrickx, J. M., & de Montjoye, Y.-A. (2019). Estimating the success of re-identifications in incomplete datasets using generative models. Nature Communications, 10(1), 3069. https://doi.org/10.1038/s41467-019-10933-3
  45. Cummings, R., Gupta, V., Kimpara, D., & Morgenstern, J. (2019). On the Compatibility of Privacy and Fairness. Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization - UMAP’19 Adjunct, 309–315. https://doi.org/10.1145/3314183.3323847
  46. Kuppam et al., 2020
  47. Mavriki, P., & Karyda, M. (2019). Automated data-driven profiling: Threats for group privacy. Information & Computer Security, 28(2), 183–197. https://doi.org/10.1108/ICS-04-2019-0048
  48. Barocas, S., & Levy, K. (2019). Privacy Dependencies (SSRN Scholarly Paper ID 3447384). Social Science Research Network. https://papers.ssrn.com/abstract=3447384
  49. Bivens, R. (2017). The gender binary will not be deprogrammed: Ten years of coding gender on Facebook. New Media & Society, 19(6), 880–898. https://doi.org/10.1177/1461444815621527
  50. Mittelstadt, B. (2017). From Individual to Group Privacy in Big Data Analytics. Philosophy & Technology, 30(4), 475–494. https://doi.org/10.1007/s13347-017-0253-7
  51. Taylor, 2021
  52. Draper and Turow, 2019
  53. Hanna, A., Denton, E., Smart, A., & Smith-Loud, J. (2020). Towards a Critical Race Methodology in Algorithmic Fairness. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 501–512. https://doi.org/10.1145/3351095.3372826
  54. Keyes, O., Hitzig, Z., & Blell, M. (2021). Truth from the machine: Artificial intelligence and the materialization of identity. Interdisciplinary Science Reviews, 46(1–2), 158–175. https://doi.org/10.1080/03080188.2020.1840224
  55. Scheuerman, M. K., Wade, K., Lustig, C., & Brubaker, J. R. (2020). How We’ve Taught Algorithms to See Identity: Constructing Race and Gender in Image Databases for Facial Analysis. Proceedings of the ACM on Human-Computer Interaction, 4(CSCW1), 1–35. https://doi.org/10.1145/3392866
  56. Roth, W. D. (2016). The multiple dimensions of race. Ethnic and Racial Studies, 39(8), 1310–1338. https://doi.org/10.1080/01419870.2016.1140793
  57. Hanna et al., 2020
  58. Keyes, O. (2018). The Misgendering Machines: Trans/HCI Implications of Automatic Gender Recognition. Proceedings of the ACM on Human-Computer Interaction, 2(CSCW), 88:1-88:22. https://doi.org/10.1145/3274357
  59. Keyes, O. (2019, April 8). Counting the Countless. Real Life. https://reallifemag.com/counting-the-countless/
  60. Keyes, O., Hitzig, Z., & Blell, M. (2021). Truth from the machine: Artificial intelligence and the materialization of identity. Interdisciplinary Science Reviews, 46(1–2), 158–175. https://doi.org/10.1080/03080188.2020.1840224
  61. Scheuerman et al., 2020
  62. Scheuerman et al., 2020
  63. Stark, L., & Hutson, J. (2021). Physiognomic Artificial Intelligence (SSRN Scholarly Paper ID 3927300). Social Science Research Network. https://doi.org/10.2139/ssrn.3927300
  64. U.S. Department of Justice. (2019). The First Step Act of 2018: Risk and Needs Assessment System. Office of the Attorney General.
  65. Partnership on AI. (2020). Algorithmic Risk Assessment and COVID-19: Why PATTERN Should Not Be Used. Partnership on AI. http://partnershiponai.org/wp-content/uploads/2021/07/Why-PATTERN-Should-Not-Be-Used.pdf
  66. Hill, K. (2020, January 18). The Secretive Company That Might End Privacy as We Know It. The New York Times. https://www.nytimes.com/2020/01/18/technology/clearview-privacy-facial-recognition.html
  67. Porter, J. (2020, February 6). Facebook and LinkedIn are latest to demand Clearview stop scraping images for facial recognition tech. The Verge. https://www.theverge.com/2020/2/6/21126063/facebook-clearview-ai-image-scraping-facial-recognition-database-terms-of-service-twitter-youtube
  68. Regulation (EU) 2016/679 (General Data Protection Regulation), (2016) (testimony of European Parliament and Council of European Union). https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
  69. Obar, J. A. (2020). Sunlight alone is not a disinfectant: Consent and the futility of opening Big Data black boxes (without assistance). Big Data & Society, 7(1), 2053951720935615. https://doi.org/10.1177/2053951720935615
  70. Obar, J. A. (2020). Sunlight alone is not a disinfectant: Consent and the futility of opening Big Data black boxes (without assistance). Big Data & Society, 7(1), 2053951720935615. https://doi.org/10.1177/2053951720935615
  71. Obar, 2020
  72. Angwin, J., & Parris, T. (2016, October 28). Facebook Lets Advertisers Exclude Users by Race. ProPublica. https://www.propublica.org/article/facebook-lets-advertisers-exclude-users-by-race
  73. Benjamin, R. (2019). Race after technology: Abolitionist tools for the new Jim code. Polity.
  74. Browne, S. (2015). Dark Matters: On the Surveillance of Blackness. In Dark Matters. Duke University Press. https://doi.org/10.1515/9780822375302
  75. Eubanks, V. (2017). Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. St. Martin’s Press.
  76. Hoffmann, 2020
  77. Rainie, S. C., Kukutai, T., Walter, M., Figueroa-Rodríguez, O. L., Walker, J., & Axelsson, P. (2019). Indigenous data sovereignty.
  78. Ricaurte, P. (2019). Data Epistemologies, Coloniality of Power, and Resistance. Television & New Media, 16.
  79. Walter, M. (2020, October 7). Delivering Indigenous Data Sovereignty. https://www.youtube.com/watch?v=NCsCZJ8ugPA
  80. See, for example: Bowker, G. C., & Star, S. L. (1999). Sorting things out: Classification and its consequences. MIT Press.
  81. See, for example: Dembroff, R. (2018). Real Talk on the Metaphysics of Gender. Philosophical Topics, 46(2), 21–50. https://doi.org/10.5840/philtopics201846212
  82. See, for example: Hacking, I. (1995). The looping effects of human kinds. In Causal cognition: A multidisciplinary debate (pp. 351–394). Clarendon Press/Oxford University Press.
  83. See, for example: Hanna et al., 2020
  84. See, for example: Hu, L., & Kohler-Hausmann, I. (2020). What’s Sex Got to Do With Fair Machine Learning? 11.
  85. See, for example: Keyes (2019)
  86. See, for example: Zuberi, T., & Bonilla-Silva, E. (2008). White Logic, White Methods: Racism and Methodology. Rowman & Littlefield Publishers.
  87. Hanna et al., 2020
  88. Andrus et al., 2021
  89. Bivens, 2017
  90. Hamidi, F., Scheuerman, M. K., & Branham, S. M. (2018). Gender Recognition or Gender Reductionism?: The Social Implications of Embedded Gender Recognition Systems. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems - CHI ’18, 1–13. https://doi.org/10.1145/3173574.3173582
  91. Keyes, 2018
  92. Keyes, 2021
  93. Fu, S., & King, K. (2021). Data disaggregation and its discontents: Discourses of civil rights, efficiency and ethnic registry. Discourse: Studies in the Cultural Politics of Education, 42(2), 199–214. https://doi.org/10.1080/01596306.2019.1602507
  94. Poon et al., 2017
  95. Hanna et al., 2020
  96. Saperstein, A. (2012). Capturing complexity in the United States: Which aspects of race matter and when? Ethnic and Racial Studies, 35(8), 1484–1502. https://doi.org/10.1080/01419870.2011.607504
  97. Keyes, 2019
  98. Ruberg, B., & Ruelos, S. (2020). Data for queer lives: How LGBTQ gender and sexuality identities challenge norms of demographics. Big Data & Society, 7(1), 2053951720933286. https://doi.org/10.1177/2053951720933286
  99. Tomasev et al., 2021
  100. Pauker et al., 2018
  101. Ruberg & Ruelos, 2020
  102. Braun, L., Fausto-Sterling, A., Fullwiley, D., Hammonds, E. M., Nelson, A., Quivers, W., Reverby, S. M., & Shields, A. E. (2007). Racial Categories in Medical Practice: How Useful Are They? PLOS Medicine, 4(9), e271. https://doi.org/10.1371/journal.pmed.0040271
  103. Hanna et al., 2020
  104. Morning, A. (2014). Does Genomics Challenge the Social Construction of Race?: Sociological Theory. https://doi.org/10.1177/0735275114550881
  105. Barabas, C. (2019). Beyond Bias: Re-Imagining the Terms of ‘Ethical AI’ in Criminal Law. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3377921
  106. Barabas, 2019
  107. Hacking, 1995
  108. Hacking, 1995
  109. Dembroff, 2018
  110. Andrus et al., 2021
  111. Holstein, K., Vaughan, J. W., Daumé III, H., Dudík, M., & Wallach, H. (2019). Improving fairness in machine learning systems: What do industry practitioners need? Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems - CHI ’19, 1–16. https://doi.org/10.1145/3290605.3300830
  112. Rakova, B., Yang, J., Cramer, H., & Chowdhury, R. (2021). Where Responsible AI meets Reality: Practitioner Perspectives on Enablers for shifting Organizational Practices. ArXiv:2006.12358 (Cs). https://doi.org/10.1145/3449081
  113. Wachter, S., Mittelstadt, B., & Russell, C. (2021). Why Fairness Cannot Be Automated: Bridging the Gap Between EU Non-Discrimination Law and AI. Computer Law & Security Review, 41. https://doi.org/10.2139/ssrn.3547922
  114. Xenidis, R. (2021). Tuning EU Equality Law to Algorithmic Discrimination: Three Pathways to Resilience. Maastricht Journal of European and Comparative Law, 27, 1023263X2098217. https://doi.org/10.1177/1023263X20982173
  115. Xiang, A. (2021). Reconciling legal and technical approaches to algorithmic bias. Tennessee Law Review, 88(3).
  116. Balayn & Gürses, 2021
  117. Fazelpour, S., & Lipton, Z. C. (2020). Algorithmic Fairness from a Non-ideal Perspective. Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 57–63. https://doi.org/10.1145/3375627.3375828
  118. Green & Viljoen, 2020
  119. Green, B., & Viljoen, S. (2020). Algorithmic realism: Expanding the boundaries of algorithmic thought. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 19–31. https://doi.org/10.1145/3351095.3372840
  120. Gitelman, L. (2013). Raw Data Is an Oxymoron. MIT Press.
  121. Barabas, C., Doyle, C., Rubinovitz, J., & Dinakar, K. (2020). Studying Up: Reorienting the study of algorithmic fairness around issues of power. 10.
  122. Crooks, R., & Currie, M. (2021). Numbers will not save us: Agonistic data practices. The Information Society, 0(0), 1–19. https://doi.org/10.1080/01972243.2021.1920081
  123. Muhammad, K. G. (2019). The Condemnation of Blackness: Race, Crime, and the Making of Modern Urban America, With a New Preface. Harvard University Press.
  124. Ochigame, R., Barabas, C., Dinakar, K., Virza, M., & Ito, J. (2018). Beyond Legitimation: Rethinking Fairness, Interpretability, and Accuracy in Machine Learning. International Conference on Machine Learning, 6.
  125. Ochigame et al., 2018
  126. Basu, S., Berman, R., Bloomston, A., Cambell, J., Diaz, A., Era, N., Evans, B., Palkar, S., & Wharton, S. (2020). Measuring discrepancies in Airbnb guest acceptance rates using anonymized demographic data. AirBnB. https://news.airbnb.com/wp-content/uploads/sites/4/2020/06/Project-Lighthouse-Airbnb-2020-06-12.pdf
Table of Contents
1
2
3
4
5
6

Bringing Facial Recognition Systems To Light

PAI Staff

An Introduction to PAI’s Facial Recognition Systems Project

An Introduction to PAI’s Facial Recognition Systems Project

Facial recognition. What do you think of when you hear that term? How do these systems know your name? How accurate are they? And what else can they tell you about someone whose image is in the system?

These questions and others led the Partnership on AI (PAI) to begin the facial recognition systems project. During a series of workshops with our partners, we discovered it was first necessary to grasp how these systems work. The result was PAI’s paper “Understanding Facial Recognition Systems,” which defines the technology used in systems that attempt to verify who someone says they are or identify who someone is.

A productive discussion about the roles of these systems in society starts when we speak the same language, and also understand the importance and meaning of technical terms such as “training the system,” “enrollment database,” and “match thresholds.”

Let’s begin — keeping in mind that the graphics below do not represent any specific system, and are meant only to illustrate how the technology works.

How Facial Recognition Systems Work

How Facial Recognition Systems Work

Understanding how facial recognition systems work is essential to being able to examine the technical, social & cultural implications of these systems.

Let’s describe how a facial recognition system works. First, the system detects whether an image contains a face. If so, it then tries to recognize the face in one of two ways:

During facial verification: The system attempts to verify the identity of the face. It does so by determining whether the face in the image matches a specific face previously stored in the system.

During facial identification: The system attempts to predict the identity of the face. It does so by determining whether the face in the image potentially matches any of the faces previously stored in the system.

Let’s look at these steps in greater detail

A facial recognition system needs to first be trained, with two main factors influencing how the system performs: firstly, the quality of images (such as the angle, lighting, and resolution) and secondly the diversity of the faces in the dataset used to train the system.

An enrollment database consisting of faces and names is also created. The faces can also be stored in the form of templates.

The first step in using any facial recognition system is when a probe image, derived from either a photo or a video, is submitted to the system. The system then detects the face in the image and creates a template.

 

There are two paths that can be taken

The template derived from the probe image can be compared to a single template in the enrollment database. This “1:1” process is called facial verification.

Alternatively, the template derived from the probe image can be compared to all templates in the enrollment database. This “1:MANY” process is called facial identification.

 

Click and drag the slider to see the importance of match thresholds



Beyond facial recognition

Sometimes facial recognition systems are described as including facial characterization (also called facial analysis) systems, which detect facial attributes in an image, and then sort the faces by categories such as gender, race, or age. These systems are not part of facial recognition systems because they are not used to verify or predict an identity.

1

Report on Algorithmic Risk Assessment Tools in the U.S. Criminal Justice System

PAI Staff

Overview

Overview 

This report was written by the staff of the Partnership on AI (PAI) and many of our Partner organizations, with particularly  input from the members of PAI’s Fairness, Transparency, and Accountability Working Group. Our work on this topic was initially prompted by California’s Senate Bill 10 (S.B. 10), which would mandate the purchase and use of statistical and machine learning risk assessment tools for pretrial detention decisions, but our work has subsequently expanded to assess the use of such software across the United States.

Though this document incorporated suggestions or direct authorship from around 30-40 of our partner organizations, it should not under any circumstances be read as representing the views of any specific member of the Partnership. Instead, it is an attempt to report the widely held views of the artificial intelligence research community as a whole.

The Partnership on AI is a 501(c)3 nonprofit organization established to study and formulate best practices on AI technologies, to advance the public’s understanding of AI, and to serve as an open platform for discussion and engagement about AI and its influences on people and society.

The Partnership’s activities are determined in collaboration with its coalition of over 80 members, including civil society groups, corporate developers and users of AI, and numerous academic artificial intelligence research labs. PAI aims to create a space for open conversation, the development of best practices, and coordination of technical research to ensure that AI is used for the benefit of humanity and society. Crucially, the Partnership is an independent organization; though supported and shaped by our Partner community, the Partnership is ultimately more than the sum of its parts and makes independent determinations to which its Partners collectively contribute, but never individually dictate. PAI provides administrative and project management support to Working Groups, oversees project selection, and provides financial resources or direct research support to projects as needs dictate.

The Partnership on AI is deeply grateful for the collaboration of so many colleagues in this endeavor and looks forward to further convening and undertaking the multi-stakeholder research needed to build best practices for the use of AI in this critical domain.

Report on Algorithmic Risk Assessment Tools in the U.S. Criminal Justice System

Overview

Executive Summary

Introduction

Minimum Requirements for the Responsible Deployment of Criminal Justice Risk Assessment Tools

Requirement 1: Training datasets must measure the intended variables

Requirement 2: Bias in statistical models must be measured and mitigated

Requirement 3: Tools must not conflate multiple distinct predictions

Requirement 4: Predictions and how they are made must be easily interpretable

Requirement 5: Tools should produce confidence estimates for their predictions

Requirement 6: Users of risk assessment tools must attend trainings on the nature and limitations of the tools

Requirement 7: Policymakers must ensure that public policy goals are appropriately reflected in these tools

Requirement 8: Tool designs, architectures, and training data must be open to research, review and criticismRequirement 8: Tool designs, architectures, and training data must be open to research, review and criticism

Requirement 9: Tools must support data retention and reproducibility to enable meaningful contestation and challenges

Requirement 10: Jurisdictions must take responsibility for the post-deployment evaluation, monitoring, and auditing of these tools

Conclusion

Sources Cited

  1. For example, many risk assessment tools assign individuals to decile ranks, converting their risk score into a rating from 1-10 which reflects whether they’re in the bottom 10% of risky individuals (1), the next highest 10% (2), and so on (3-10). Alternatively, risk categorization could be based on thresholds labeled as “low,” “medium,” or “high” risk.
  2. Whether this is the case depends on how one defines AI; it would be true under many but not all of the definitions surveyed for instance in Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 2010, at 2. PAI considers more expansive definitions, that include any automation of analysis and decision making by humans, to be most helpful.
  3. In California, the recently enacted California Bail Reform Act (S.B. 10) mandates the implementation of risk assessment tools while eliminating money bail in the state, though implementation of the law has been put on hold as a result of a 2020 ballot measure funded by the bail bonds industry to repeal it; see https://ballotpedia.org/California_Replace_Cash_Bail_with_Risk_Assessments_Referendum_(2020); Robert Salonga, Law ending cash bail in California halted after referendum qualifies for 2020 ballot, San Jose Mercury News (Jan. 17, 2019), https://www.mercurynews.com/2019/01/17/law-ending-cash-bail-in-california-halted-after-referendum-qualifies-for-2020-ballot/. In addition, a new federal law, the First Step Act of 2018 (S. 3649), requires the Attorney General to review existing risk assessment tools and develop recommendations for “evidence-based recidivism reduction programs” and to “develop and release” a new risk- and needs- assessment system by July 2019 for use in managing the federal prison population. The bill allows the Attorney General to use currently-existing risk and needs assessment tools, as appropriate, in the development of this system.
  4. In addition, many of our civil society partners have taken a clear public stance to this effect, and some go further in suggesting that only individual-level decision-making will be adequate for this application regardless of the robustness and validity of risk assessment instruments. See The Use of Pretrial ‘Risk Assessment’ Instruments: A Shared Statement of Civil Rights Concerns, http://civilrightsdocs.info/pdf/criminal-justice/Pretrial-Risk-Assessment-Full.pdf (shared statement of 115 civil rights and technology policy organizations, arguing that all pretrial detention should follow from evidentiary hearings rather than machine learning determinations, on both procedural and accuracy grounds); see also Comments of Upturn; The Leadership Conference on Civil and Human Rights; The Leadership Conference Education Fund; NYU Law’s Center on Race, Inequality, and the Law; The AI Now Institute; Color Of Change; and Media Mobilizing Project on Proposed California Rules of Court 4.10 and 4.40, https://www.upturn.org/static/files/2018-12-14_Final-Coalition-Comment-on-SB10-Proposed-Rules.pdf (“Finding that the defendant shares characteristics with a collectively higher risk group is the most specific observation that risk assessment instruments can make about any person. Such a finding does not answer, or even address, the question of whether detention is the only way to reasonably assure that person’s reappearance or the preservation of public safety. That question must be asked specifically about the individual whose liberty is at stake — and it must be answered in the affirmative in order for detention to be constitutionally justifiable.”) PAI notes that the requirement for an individualized hearing before detention implicitly includes a need for timeliness. Many jurisdictions across the US have detention limits at 24 or 48 hours without hearings. Aspects of this stance are shared by some risk assessment tool makers; see, Arnold Ventures’ Statement of Principles on Pretrial Justice and Use of Pretrial Risk Assessment, https://craftmediabucket.s3.amazonaws.com/uploads/AV-Statement-of-Principles-on-Pretrial-Justice.pdf.
  5. See Ecological Fallacy section and Baseline D for further discussion of this topic.
  6. Quantitatively, accuracy is usually defined as the fraction of correct answers the model produces among all the answers it gives. So a model that answers correctly in 4 out of 5 cases would have an accuracy of 80%. Interestingly, models which predict rare phenomena (like violent criminality) can be incredibly accurate without being useful for their prediction tasks. For example, if only 1% of individuals will commit a violent crime, a model that predicts that no one will commit a violent crime will have 99% accuracy even though it does not correctly identify any of the cases where someone actually commits a violent crime. For this reason and others, evaluation of machine learning models is a complicated and subtle topic which is the subject of active research. In particular, note that inaccuracy can and should be subdivided into errors of “Type I” (false positive) and “Type II” (false negative) – one of which may be more acceptable than the other, depending on the context.
  7. Calibration is a property of models such that among the group they predict a 50% risk for, 50% of cases recidivate. Note that this says nothing about the accuracy of the prediction, because a coin toss would be calibrated in that sense. All risk assessment tools should be calibrated, butthere are more specific desirable properties such as calibration within groups (discussed in Requirement 2 below) that not all tools will or should satisfy completely.
  8. Sarah L. Desmarais, Evan M. Lowder, Pretrial Risk Assessment Tools: A Primer for Judges, Prosecutors, and Defense Attorneys, MacArthur Safety and Justice Challenge (Feb 2019). The issue of cross-comparison applies not only to geography but to time. It may be valuable to use comparisons over time to assist in measuring the validity of tools, though such evaluations must be corrected for the fact that crime in the United States is presently a rapidly changing (and still on the whole rapidly declining) phenomenon.
  9. As a technical matter, a model can be biased for subpopulations while being unbiased on average for the population as a whole.
  10. Note here that the phenomenon of societal bias—the existence of beliefs, expectations, institutions, or even self-propagating patterns of behavior that lead to unjust outcomes for some groups—is not always the same as, or reflected in statistical bias, and vice versa. One can instead think of these as an overlapping Venn diagram with a large intersection. Most of the concerns about risk assessment tools are about biases that are simultaneously statistical and societal, though there are some that are about purely societal bias. For instance, if non-uniform access to transportation (which is a societal bias) causes higher rates of failure to appear for court dates in some communities, the problem is a societal bias, but not a statistical one. The inclusion of demographic parity measurements as part of model bias measurement (see Requirement 2) may be a way to measure this, though really the best solutions involve distinct policy responses (for instance, providing transportation assistance for court dates or finding ways to improve transit to underserved communities).
  11. For instance, Eckhouse et al. propose a 3-level taxonomy of biases. Laurel Eckhouse, Kristian Lum, Cynthia Conti-Cook, and Julie Ciccolini, Layers of Bias: A Unified Approach for Understanding Problems with Risk Assessment, Criminal Justice and Behavior, (Nov 2018).
  12. Some of the experts within the Partnership oppose the use of risk assessment tools specifically because of their pessimism that sufficient data exists or could practically be collected to meet purposes (a) and (b).
  13. Moreover, defining recidivism is difficult in the pretrial context. Usually, recidivism variables are defined using a set time period, e.g., whether someone is arrested within 1 year of their initial arrest or whether someone is arrested within 3 years of their release from prison. In the pretrial context, recidivism is defined as whether the individual is arrested during the time after their arrest (or pretrial detention) and before the individual’s trial. That period of time, however, can vary significantly from case to case, so it is necessary to ensure that each risk assessment tool predicts an appropriately defined measure of recidivism or public safety risk.
  14. See, e.g., Report: The War on Marijuana in Black and White, ACLU (2013), https://www.aclu.org/report/report-war-marijuana-black-and-white; ACLU submission to Inter-American Commission on Human Rights, Hearing on Reports of Racism in the Justice System of the United States, https://www.aclu.org/sites/default/files/assets/141027_iachr_racial_disparities_aclu_submission_0.pdf, (Oct 2017); Samuel Gross, Maurice Possley, Klara Stephens, Race and Wrongful Convictions in the United States, National Registry of Exonerations, https://www.law.umich.edu/special/exoneration/Documents/Race_and_Wrongful_Convictions.pdf; but see Jennifer L. Skeem and Christopher Lowenkamp, Risk, Race & Recidivism: Predictive Bias and Disparate Impact, Criminology 54 (2016), 690, https://risk-resilience.berkeley.edu/sites/default/files/journal-articles/files/criminology_proofs_archive.pdf (For some categories of crime in some jurisdictions, victimization and self-reporting surveys imply crime rates are comparable to arrest rates across demographic groups; an explicit and transparent reweighting process is procedurally appropriate even in cases where the correction it results in is small).
  15. See David Robinson and John Logan Koepke, Stuck in a Pattern: Early evidence on ‘predictive policing’ and civil rights, (Aug. 2016). https://www.upturn.org/reports/2016/stuck-in-a-pattern/ (“Criminologists have long emphasized that crime reports, and other statistics gathered by the police, are not an accurate record of the crime that happens in a community. In short, the numbers are greatly influenced by what crimes citizens choose to report, the places police are sent on patrol, and how police decide to respond to the situations they encounter. The National Crime Victimization Survey (conducted by the Department of Justice) found that from 2006-2010, 52 percent of violent crime victimizations went unreported to police and 60 percent of household property crime victimizations went unreported. Historically, the National Crime Victimization Survey ‘has shown that police are not notified of about half of all rapes, robberies and aggravated assaults.’”) See also Kristian Lum and William Isaac, To predict and serve? (2016): 14-19.
  16. Carl B. Klockars, Some Really Cheap Ways of Measuring What Really Matters, in Measuring What Matters: Proceedings From the Policing Research Meetings, 195, 195-201 (1999), https://www.ncjrs.gov/pdffiles1/nij/170610.pdf. [https://perma.cc/BRP3-6Z79] (“If I had to select a single type of crime for which its true level—the level at which it is reported—and the police statistics that record it were virtually identical, it would be bank robbery. Those figures are likely to be identical because banks are geared in all sorts of ways…to aid in the reporting and recording of robberies and the identification of robbers. And, because mostly everyone takes bank robbery seriously, both Federal and local police are highly motivated to record such events.”)
  17. ACLU, The War on Marijuana in Black and White: Billions of Dollars Wasted on Racially Biased Arrests, (2013), available at https://www.aclu.org/files/assets/aclu-thewaronmarijuana-rel2.pdf.
  18. Lisa Stoltenberg & Stewart J. D’Alessio, Sex Differences in the Likelihood of Arrest, J. Crim. Justice 32 (5), 2004, 443-454; Lisa Stoltenberg, David Eitle & Stewart J. D’Alessio, Race and the Probability of Arrest, Social Forces 81(4) 2003 1381-1387; Tia Stevens & Merry Morash, Racial/Ethnic Disparities in Boys’ Probability of Arrest and Court Actions in 1980 and 2000: The Disproportionate Impact of ‘‘Getting Tough’’ on Crime, Youth and Juvenile Justice 13(1), (2014).
  19. Delbert S. Elliott, Lies, Damn Lies, and Arrest Statistics, (1995), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.9427&rep=rep1&type=pdf, 11.
  20. Simply reminding people to appear improves appearance rates. Pretrial Justice Center for Courts, Use of Court Date Reminder Notices to Improve Court Appearance Rates, (Sept. 2017).
  21. There are a number of obstacles that risk assessment toolmakers have identified towards better predictions on this front. Firstly, there is a lack of consistent data and definitions to help disentangle willful flight from justice from failures to appear for reasons that are either unintentional or not indicative of public safety risk. Policymakers may need to take the lead in defining and collecting data on these reasons, as well as identifying interventions besides incarceration that may be most appropriate for responding to them.
  22. This is known in the algorithmic fairness literature as “fairness through unawareness”; see Moritz Hardt, Eric Price, & Nathan Srebro, Equality of Opportunity in Supervised Learning, Proc. NeurIPS 2016, https://arxiv.org/pdf/1610.02413.pdf, first publishing the term and citing earlier literature for proofs of its ineffectiveness, particularly Pedreshi, Ruggieri, & Turini, Discrimination-aware data mining, Knowledge Discovery & Data Mining, Proc. SIGKDD (2008), http://eprints.adm.unipi.it/2192/1/TR-07-19.pdf.gz. In other fields, blindness is the more common term for the idea of achieving fairness by ignoring protected class variables (e.g., “race-blind admissions” or “gender-blind hiring”).
  23. Another way of conceiving omitted variable bias is as follows: data-related biases as discussed in Requirement 1 are problems with the rows in a database or spreadsheet: the rows may contain asymmetrical errors, or not be a representative sample of events as they occur in the world. Omitted variable bias, in contrast, is a problem with not having enough or the right columns in a dataset.
  24. These specific examples are from the Equivant/Northpoint COMPAS risk assessment; see sample questionnaire at https://assets.documentcloud.org/documents/2702103/Sample-Risk-Assessment-COMPAS-CORE.pdf
  25. This list is by no means exhaustive. Another approach involves attempting to de-bias datasets by removing all information regarding the protected class variables. See, e.g., James E. Johndrow & Kristian Lum, An algorithm for removing sensitive information: application to race-independent recidivism prediction, (Mar. 15, 2017), https://arxiv.org/pdf/1703.04957.pdf. Not only would the protected class variable itself be removed but also variation in other variables that is correlated with the protected class variable. This would yield predictions that are independent of the protected class variables, but could have negative implications for accuracy. This method formalizes the notion of fairness known as “demographic parity,” and has the advantage of minimizing disparate impact, such that outcomes should be proportional across demographics. Similar to affirmative action, however, this approach would raise additional fairness questions given different baselines across demographics.
  26. See Moritz Hardt, Eric Price, & Nathan Srebro, Equality of Opportunity in Supervised Learning, Proc. NeurIPS 2016, https://arxiv.org/pdf/1610.02413.pdf.
  27. This is due to different baseline rates of recidivism for different demographic groups in U.S. criminal justice data. See J. Kleinberg, S. Mullainathan, M. Raghavan. Inherent Trade-Offs in the Fair Determination of Risk Scores. Proc. ITCS, (2017), https://arxiv.org/abs/1609.05807 and A. Chouldechova, Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. Proc. FAT/ML 2016, https://arxiv.org/abs/1610.07524. Another caveat is that such a correction can reduce overall utility, as measured as a function of the number of individuals improperly detained or released. See, e.g., Sam Corbett-Davies et al., Algorithmic Decision-Making and the Cost of Fairness, (2017), https://arxiv.org/pdf/1701.08230.pdf.
  28. As long as the training data show higher arrest rates among minorities, statistically accurate scores must of mathematical necessity have a higher false positive rate for minorities. For a paper that outlines how equalizing FPRs (a measure of unfair treatment) requires creating some disparity in predictive accuracy across protected categories, see J. Kleinberg, S. Mullainathan, M. Raghavan. Inherent Trade-Offs in the Fair Determination of Risk Scores. Proc. ITCS, (2017), https://arxiv.org/abs/1609.05807; for arguments about the limitations of FPRs as a sole and sufficient metric, see e.g. Sam Corbett-Davies and Sharad Goel, The Measure and Mismeasure of Fairness: A Critical Review of Fair Machine Learning, working paper, https://arxiv.org/abs/1808.00023.
  29. Geoff Pleiss et al. On Fairness and Calibration (describing the challenges of using this approach when baselines are different), https://arxiv.org/pdf/1709.02012.pdf.
  30. The stance that unequal false positive rates represents material unfairness was popularized in a study by Julia Angwin et al. Machine Bias, ProPublica, https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing, (2016), and confirmed in further detail in e.g, Julia Dressel and Hany Farid, The accuracy, fairness and limits of predicting recidivism, Science Advances, 4(1), (2018), http://advances.sciencemag.org/content/advances/4/1/eaao5580.full.pdf. Whether or not FPRs are the right measure of fairness is disputed within the statistics literature.
  31. See, e.g., Alexandra Chouldechova, Fair prediction with disparate impact: A study of bias in recidivism prediction instruments, Big Data 5(2), https://www.liebertpub.com/doi/full/10.1089/big.2016.0047, (2017).
  32. See, e.g., Niki Kilbertus et al., Avoiding Discrimination Through Causal Reasoning, (2018), https://arxiv.org/pdf/1706.02744.pdf.
  33. Formally, the toolmaker must distinguish “resolved” and “unresolved” discrimination. Unresolved discrimination results from a direct causal path between the protected class and predictor that is not blocked by a “resolving variable.” A resolving variable is one that is influenced by the protected class variable in a manner that we accept as nondiscriminatory. For example, if women are more likely to apply for graduate school in the humanities and men are more likely to apply for graduate school in STEM fields, and if humanities departments have lower acceptance rates, then women might exhibit lower acceptance rates overall even if conditional on department they have higher acceptance rates. In this case, the department variable can be considered a resolving variable if our main concern is discriminatory admissions practices. See, e.g., Niki Kilbertus et al., Avoiding Discrimination Through Causal Reasoning, (2018), https://arxiv.org/pdf/1706.02744.pdf.
  34. In addition to the trade-offs highlighted in this section, it should be noted that these methods require a precise taxonomy of protected classes. Although it is common in the United States to use simple taxonomies defined by the Office of Management and Budget (OMB) and the US Census Bureau, such taxonomies cannot capture the complex reality of race and ethnicity. See Revisions to the Standards for the Classification of Federal Data on Race and Ethnicity, 62 Fed. Reg. 210 (Oct 1997), https://www.govinfo.gov/content/pkg/FR-1997-10-30/pdf/97-28653.pdf. Nonetheless, algorithms for bias correction have been proposed that detect groups of decision subjects with similar circumstances automatically. For an example of such an algorithm, see Tatsunori Hashimoto et al., Fairness Without Demographics in Repeated Loss Minimization, Proc. ICML 2018, http://proceedings.mlr.press/v80/hashimoto18a/hashimoto18a.pdf. Algorithms have also been developed to detect groups of people that are spatially or socially segregated. See, e.g., Sebastian Benthall & Bruce D. Haynes, Racial categories in machine learning, Proc. FAT* 2019, https://dl.acm.org/authorize.cfm?key=N675470. Further experimentation with these methods is warranted. For one evaluation, see Jon Kleinberg, An Impossibility Theorem for Clustering, Advances in Neural Information Processing Systems 15, NeurIPS 2002.
  35. The best way to do this deserves further research on human-computer interaction. For instance, if judges are shown multiple predictions labelled “zero disparate impact for those who will not reoffend”, “most accurate prediction,” “demographic parity,” etc, will they understand and respond appropriately? If not, decisions about what bias corrections to use might be better made at the level of policymakers or technical government experts evaluating these tools.
  36. Cost benefit models require explicit tradeoff choices to be made between different objectives including liberty, safety, and fair treatment of different categories of defendants. These choices should be explicit, and must be made transparently and accountably by policymakers. For a macroscopic example of such a calculation see David Roodman, The Impacts of Incarceration on Crime, Open Philanthropy Project report, September 2017, p p131, at https://www.openphilanthropy.org/files/Focus_Areas/Criminal_Justice_Reform/The_impacts_of_incarceration_on_crime_10.pdf.
  37. Sandra G. Mayson, Dangerous Defendants, 127 Yale L.J. 490, 509-510 (2018).
  38. Id., at 510. (“The two risks are different in kind, are best predicted by different variables, and are most effectively managed in different ways.”)
  39. For instance, needing childcare increases the risk of failure to appear (see Brian H. Bornsein, Alan J. Thomkins & Elizabeth N. Neely, Reducing Courts’ Failure to Appear Rate: A Procedural Justice Approach, U.S. DOJ report 234370, available at https://www.ncjrs.gov/pdffiles1/nij/grants/234370.pdf ) but is less likely to increase the risk of recidivism.
  40. For example, if the goal of a risk assessment tool is to advance the twin public policy goals of reducing incarceration and ensuring defendants appear for their court dates, then the tool should not conflate a defendant’s risk of knowingly fleeing justice with their risk of unintentionally failing to appear, since the latter can be mitigated by interventions besides incarceration (e.g. giving the defendant the opportunity to sign up for phone calls or SMS-based reminders about their court date, or ensuring the defendant has transportation to court on the day they are to appear).
  41. Notably, part of the holding in Loomis, mandated a disclosure in any Presentence Investigation Report that COMPAS risk assessment information “was not developed for use at sentencing, but was intended for use by the Department of Corrections in making determinations regarding treatment, supervision, and parole,” Wisconsin v. Loomis (881 N.W.2d 749).
  42. M.L. Cummings, Automation Bias in Intelligent Time Critical Decision Support Systems, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.2634&rep=rep1&type=pdf.
  43. It is important to note, however, that there is also evidence of the opposite phenomenon, whereby users might simply ignore the risk assessment tools’ predictions. In Christin’s ethnography of risk assessment users, she notes that professionals often “buffer” their professional judgment from the influence of automated tools. She quotes a former prosecutor as saying of risk assessment, “When I was a prosecutor I didn’t put much stock in it, I’d prefer to look at actual behaviors. I just didn’t know how these tests were administered, in which circumstances, with what kind of data.” From Christin, A., 2017, Algorithms in practice: Comparing web journalism and criminal justice, Big Data & Society, 4(2).
  44. See Wisconsin v. Loomis (881 N.W.2d 749).
  45. “Specifically, any PSI containing a COMPAS risk assessment must inform the sentencing court about the following cautions regarding a COMPAS risk assessment’s accuracy: (1) the proprietary nature of COMPAS has been invoked to prevent disclosure of information relating to how factors are weighed or how risk scores are to be determined; (2) risk assessment compares defendants to a national sample, but no cross- validation study for a Wisconsin population has yet been completed; (3) some studies of COMPAS risk assessment scores have raised questions about whether they disproportionately classify minority offenders as having a higher risk of recidivism; and (4) risk assessment tools must be constantly monitored and re-normed for accuracy due to changing populations and subpopulations.” Wisconsin v. Loomis (881 N.W.2d 749).
  46. Computer interfaces, even for simple tasks, can be highly confusing to users. For example, one study found that users failed to notice anomalies on a screen designed to show them choices they had previously selected for confirmation over 50% of the time, even after carefully redesigning the confirmation screen to maximize the visibility of anomalies. See Campbell, B. A., & Byrne, M. D. (2009). Now do voters notice review screen anomalies? A look at voting system usability, Proceedings of the 2009 Electronic Voting Technology Workshop/Workshop on Trustworthy Elections (EVT/WOTE ’09).
  47. This point depends on the number of input variables used for prediction. With a model that has a large number of features (such as COMPAS), it might be appropriate to use a method like gradient-boosted decision trees or random forests, and then provide the interpretation using an approximation. See Zach Lipton, The Mythos of Model Interpretability, Proc. ICML 2016, available at https://arxiv.org/pdf/1606.03490.pdf, §4.1. For examples of methods for providing explanations of complex models, see, e.g., Gilles Louppe et al., Understanding the variable importances in forests of randomized trees, Proc. NIPS 2013, available at https://papers.nips.cc/paper/4928-understanding-variable-importances-in-forests-of-randomized-trees.pdf; Marco Ribeiro, LIME – Local Interpretable
  48. Laurel Eckhouse et al., Layers of Bias: A Unified Approach for Understanding Problems With Risk Assessment, 46(2) Criminal Justice and Behavior 185–209 (2018), https://doi.org/10.1177/0093854818811379
  49. See id.
  50. See id.
  51. The lowest risk category for the Colorado Pretrial Assessment Tool (CPAT) included scores 0-17, while the highest risk category included a much broader range of scores: 51-82. In addition, the highest risk category corresponded to a Public Safety Rate of 58% and a Court Appearance Rate of 51%. Pretrial Justice Institute, (2013). Colorado Pretrial Assessment Tool (CPAT): Administration, scoring, and reporting manual, Version 1. Pretrial Justice Institute. Retrieved from http://capscolorado.org/yahoo_site_admin/assets/docs/CPAT_Manual_v1_-_PJI_2013.279135658.pdf
  52. User and usability studies such as those from the human-computer interaction field can be employed to study the question of how much deference judges give to pretrial or pre-sentencing investigations. For example, a study could examine how error bands affect judges’ inclination to follow predictions or (when they have other instincts) overrule them.
  53. As noted in Requirement 4, these mappings of probabilities to scores or risk categories are not necessarily intuitive, i.e. they are often not linear or might differ for different groups.
  54. In a simple machine learning prediction model, the tool might simply produce an output like “35% chance of recidivism.” A bootstrapped tool uses many resampled versions of the training datasets to make different predictions, allowing an output like, “It is 80% likely that this individual’s chance of recidivating is in the 20% – 50% range.” Of course these error bars are still relative to the training data, including any sampling or omitted variable biases it may reflect.
  55. The specific definition of fairness would depend on the fairness correction used.
  56. Humans are not naturally good at understanding probabilities or confidence estimates, though some training materials and games exist that can teach these skills; see eg: https://acritch.com/credence-game/
  57. To inform this future research, DeMichele et al.’s study conducting interviews with judges using the PSA tool can provide useful context for how judges understand and interpret these tools. DeMichele, Matthew and Comfort, Megan and Misra, Shilpi and Barrick, Kelle and Baumgartner, Peter, The Intuitive-Override Model: Nudging Judges Toward Pretrial Risk Assessment Instruments, (April 25, 2018). Available at SSRN: https://ssrn.com/abstract=3168500 or http://dx.doi.org/10.2139/ssrn.3168500;
  58. See the University of Washington’s Tech Policy Lab’s Diverse Voices methodology for a structured approach to inclusive requirements gathering. Magassa, Lassana, Meg Young, and Batya Friedman, Diverse Voices, (2017), http://techpolicylab.org/diversevoicesguide/.
  59. Such disclosures support public trust by revealing the existence and scope of a system, and by enabling challenges to the system’s role in government. See Pasquale, Frank. The black box society: The secret algorithms that control money and information. Harvard University Press, (2015). Certain legal requirements on government use of computers demand such disclosures. At the federal level, the Privacy Act of 1974 requires agencies to publish notices of the existence of any “system of records” and provides individuals access to their records. Similar data protection rules exist in many states and in Europe under the General Data Protection Regulation (GDPR).
  60. Reisman, Dillon, Jason Schultz, Kate Crawford, Meredith Whittaker, Algorithmic Impact Assessments: A Practical Framework for Public Agency Accountability, AI Now Institute, (2018).
  61. See Cal. Crim. Code §§ 1320.24 (e) (7), 1320.25 (a), effective Oct 2020.
  62. First Step Act, H.R.5682 — 115th Congress (2017-2018).
  63. For further discussion on the social justice concerns related to using trade secret law to prevent the disclosure of the data and algorithms behind risk assessment tools, see Taylor R. Moore,Trade Secrets and Algorithms as Barriers to Social Justice, Center for Democracy and Technology (August 2017), https://cdt.org/files/2017/08/2017-07-31-Trade-Secret-Algorithms-as-Barriers-to-Social-Justice.pdf.
  64. Several countries already publish the details of their risk assessment models. See, e.g., Tollenaar, Nikolaj, et al. StatRec-Performance, validation and preservability of a static risk prediction instrument, Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique 129.1 (2016): 25-44 (in relation to the Netherlands); A Compendium of Research and Analysis on the Offender Assessment System (OaSys) (Robin Moore ed., Ministry of Justice Analytical Series, 2015) (in relation to the United Kingdom). Recent legislation also attempts to mandate transparency safeguards, see Idaho Legislature, House Bill No.118 (2019).
  65. See, e.g., Jeff Larson et al. How We Analyzed the COMPAS Recidivism Algorithm, ProPublica (May 23, 2016), https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm. For a sample of the research that became possible as a result of ProPublica’s data, see https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=propublica+fairness+broward. Data provided by Kentucky’s Administrative Office of the Courts has also enabled scholar’s to examine the impact of the implementation of the PSA tool in that state. Stevenson, Megan, Assessing Risk Assessment in Action (June 14, 2018). Minn. L. Rev, 103, Forthcoming; available at https://ssrn.com/abstract=3016088
  66. For an example of how a data analysis competition dealt with privacy concerns when releasing a dataset with highly sensitive information about individuals, see Ian Lundberg et al., Privacy, ethics, and data access: A case study of the Fragile Families Challenge (Sept. 1, 2018), https://arxiv.org/pdf/1809.00103.pdf.
  67. See Arvind Narayanan et al., A Precautionary Approach to Big Data Privacy (Mar. 19, 2015), http://randomwalker.info/publications/precautionary.pdf.
  68. See id. at p. 20 and 21 (describing how some sensitive datasets are only shared after the recipient completes a data use course, provides information about the recipient, and physically signs a data use agreement).
  69. For a discussion of the due process concerns that arise when information is withheld in the context of automated decision-making, see Danielle Keats Citron, Technological Due Process, 85 Wash. U. L. Rev. 1249 (2007), https://ssrn.com/abstract=1012360. See also, Paul Schwartz, Data Processing and Government Administration: The Failure of the American Legal Response to the Computer, 43 Hastings L. J. 1321 (1992).
  70. Additionally, the ability to reconstitute decisions evidences procedural regularity in critical decision processes and allows individuals to trust the integrity of automated systems even when they remain partially non-disclosed. See Joshua A. Kroll et al., Accountable algorithms, 165 U. Pa. L. Rev. 633 (2016).
  71. The ability to contest scores is not only important for defendant’s rights to adversarially challenge adverse information, but also for the ability of judges and other professionals to engage with the validity of the risk assessment outputs and develop trust in the technology. See Daniel Kluttz et al., Contestability and Professionals: From Explanations to Engagement with Algorithmic Systems (January 2019), https://dx.doi.org/10.2139/ssrn.3311894
  72. “Criteria tinkering” occurs when court clerks manipulate input values to obtain the score they think is correct for a particular defendant. See Hannah-Moffat, Kelly, Paula Maurutto, and Sarah Turnbull, Negotiated risk: Actuarial illusions and discretion in probation, 24.3 Canada J. of L. & Society/La Revue Canadienne Droit et Société 391 (2009). See also Angele Christin, Comparing Web Journalism and Criminal Justice, 4.2 Big Data & Society 1.
  73. For further guidance on how such audits and evaluations might be structured, see, AI Now Institute, Algorithmic Impact Assessments: A Practical Framework for Public Agency Accountability, https://ainowinstitute.org/aiareport2018.pdf; Christian Sandvig et al., Auditing algorithms: Research methods for detecting discrimination on internet platform (2014).
  74. See John Logan Koepke and David G. Robinson, Danger Ahead: Risk Assessment and the Future of Bail Reform, 93 Wash. L. Rev. 1725 (2018).
  75. For a discussion Latanya Sweeney & Ji Su Yoo, De-anonymizing South Korean Resident Registration Numbers Shared in Prescription Data, Technology Science, (Sept. 29, 2015), https://techscience.org/a/2015092901. Techniques exist that can guarantee that re-identification is impossible. See the literature on methods for provable privacy, notably differential privacy. A good introduction is in Kobbi Nissim, Thomas Steinke, Alexandra Wood, Mark Bun, Marco Gaboardi, David R. O’Brien, and Salil Vadhan, Differential Privacy: A Primer for a Non-technical Audience, http://privacytools.seas.harvard.edu/files/privacytools/files/pedagogical-document-dp_0.pdf.
  76. Brandon Buskey and Andrea Woods, Making Sense of Pretrial Risk Assessments, National Association of Criminal Defense Lawyers, (June 2018), https://www.nacdl.org/PretrialRiskAssessment. Human Rights Watch proposes a clear alternative: “The best way to reduce pretrial incarceration is to respect the presumption of innocence and stop jailing people who have not been convicted of a crime absent concrete evidence that they pose a serious and specific threat to others if they are released. Human Rights Watch recommends having strict rules requiring police to issue citations with orders to appear in court to people accused of misdemeanor and low-level, non-violent felonies, instead of arresting and jailing them. For people accused of more serious crimes, Human Rights Watch recommends that the release, detain, or bail decision be made following an adversarial hearing, with right to counsel, rules of evidence, an opportunity for both sides to present mitigating and aggravating evidence, a requirement that the prosecutor show sufficient evidence that the accused actually committed the crime, and high standards for showing specific, known danger if the accused is released, as opposed to relying on a statistical likelihood.” Human Rights Watch, Q & A: Profile Based Risk Assessment for US Pretrial Incarceration, Release Decisions, (June 1, 2018), https://www.hrw.org/news/2018/06/01/q-profile-based-risk-assessment-us-pretrial-incarceration-release-decisions.
Table of Contents
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16